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Abstract
Packet loss degrades the quality of experience (QoE) of video-
conferencing. The standard approach to recovering lost pack-
ets for long-distance communication where retransmission
takes too long is forward error correction (FEC). Conven-
tional approaches for FEC for real-time applications are inef-
ficient at protecting against bursts of losses. Yet such bursts
frequently arise in practice and can be better tamed with a new
class of theoretical FEC schemes, called “streaming codes,”
that require significantly less redundancy to recover bursts.
However, existing streaming codes do not address the needs
of videoconferencing, and their potential to improve the QoE
for videoconferencing is largely untested. Tambur is a new
streaming-codes-based approach to videoconferencing that
overcomes the aforementioned limitations. We first evaluate
Tambur in simulation over a large corpus of traces from Mi-
crosoft Teams. Tambur reduces the frequency of decoding
failures for video frames by 26% and the bandwidth used
for redundancy by 35% compared to the baseline. We imple-
ment Tambur in C++, integrate it with a videoconferencing
application, and evaluate end-to-end QoE metrics over an em-
ulated network showcasing substantial benefits for several key
metrics. For example, Tambur reduces the frequency and cu-
mulative duration of freezes by 26% and 29%, respectively.

1 Introduction

The quality of videoconferencing calls dictates the effec-
tiveness of remote meetings [17] which are now ubiquitous.
Videoconferencing calls can be one-on-one [27] or multi-
party [39]. Our work focuses on one-on-one calls. Video
quality depends on several key performance indicators, such
as freeze, bandwidth, packet loss, and latency [14, 28, 41].

Recovering lost packets is crucial for providing high-
quality videoconferencing [33, 48]. Losing even a single
packet may prevent rendering a video frame. It may also
prohibit rendering multiple future frames (i.e., causing the
video to freeze) due to inter-frame dependencies of com-
pressed video. Due to this, it is common for videoconferenc-
ing applications to handle packet losses at the application
level. The two broad viable solutions are retransmissions and
forward error correction (FEC). Both approaches transmit
redundant data. Consequently, there is a trade-off between
bandwidth allocated for redundancy and transmitting original
data. Furthermore, videoconferencing applications must re-
cover lost packets within a strict latency—preferably less than

150 ms [33]—to meet the real-time playback requirement.
Retransmission involves minimal redundant data since it

resends only the lost packets. Hence, it is preferred whenever
possible [64]. However, retransmission is suitable only for
scenarios with short round trip times due to the strict real-time
latency requirement of videoconferencing applications. For
all other cases, videoconferencing applications rely on FEC
to recover lost packets within an acceptable latency.

Block codes are the most common form of FEC employed
in production systems today. Under a block code, k “data
packets” are used to create r redundant packets—called “par-
ity packets.” When some of these (k + r) packets are lost,
the k data packets can still be recovered. There are r extra
parity packets, so the bandwidth overhead is (r/k)×100%.
One main objective in designing FEC schemes is to minimize
the bandwidth overhead. Common examples of block codes
include Reed-Solomon (RS) block codes [55] and fountain
(i.e., rateless) codes [40]. Many of the codes, e.g., RS codes,
are optimal for random losses in which packets are lost inde-
pendently. For instance, in the above example, if RS codes are
used, any k packets suffice for recovery. Hence, block codes
are popular for production videoconferencing applications.
For example, Microsoft Teams uses RS codes.

Videoconferencing applications send data from compressed
video frames over multiple packets. We refer to losing several
packets over one or more consecutive frames as a “burst” loss.
Burst losses can occur for various reasons, including persis-
tent Wi-Fi interference and network congestion (when applica-
tions overflow router buffers and cause correlated losses [29]).
Our analysis of packet traces from thousands of video calls
from Teams (§3.3) shows that real-world losses faced by
videoconferencing applications are indeed bursty.

Block codes are highly inefficient in their bandwidth con-
sumption when recovering from burst losses under real-time
latency requirements. In contrast, a relatively new theoretical
FEC framework, known as “streaming codes” [5,42,43], han-
dle burst losses along with strict latency constraints efficiently.
At a high level, streaming codes recover packets lost in a burst
sequentially by their respective playback deadlines, whereas
block codes recover all the lost packets simultaneously by
the earliest playback deadline. Using block codes for loss
recovery wastes later parity packets sent before the deadline
of the final lost packet. Most prior work on streaming codes
is theoretical [5, 20, 22, 26, 35, 36, 42, 43, 59–61], studying
bounds and code constructions. A few existing works [6, 25]
explore the practical applicability of streaming codes but only
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for VoIP (i.e., audio, but not video).
Given the dual importance of bandwidth and loss recovery,

streaming codes are appealing to videoconferencing applica-
tions. However, there are two main challenges. First, there
are gaps between existing streaming codes and videocon-
ferencing applications. Most practical variants of streaming
codes [6, 25] are limited to settings in which the sizes of
the input data are a fixed constant over time. In contrast, in
videoconferencing, the sizes of compressed video frames are
variable. The only streaming codes that accommodate such
variability [59–61] pessimistically assume that a frame is en-
tirely lost or received because the framework involves sending
each frame in a single packet. This is seldom true in videocon-
ferencing applications. Existing streaming codes also require
that every burst is followed by a guard space where all pack-
ets are received. But this assumption often does not hold in
practice (as we show in §3.2). Also, existing streaming codes
set the amount of redundancy with a parameter of a theoretical
channel model that is unknown in practice. Second, streaming
codes’ effectiveness for improving the QoE for real-world
videoconferencing applications is untested on real-world data.

This work addresses the aforementioned challenges. We
present Tambur, a new communication scheme for bandwidth-
efficient loss recovery for videoconferencing.1 Tambur com-
prises two components. First, a new streaming code that builds
upon a prior theoretical framework [61] while overcoming
its limitations with respect to real-world videoconferencing
applications. Specifically, Tambur allows for specifying a
bandwidth overhead for each frame. Furthermore, for any
given bandwidth overhead, Tambur creates data packets and
parity packets in a manner that (a) is not overly pessimistic
by facilitating recovery from bursts where only some packets
are lost per frame and (b) is robust to losses in the guard
space. Second, the streaming code is integrated with a ma-
chine learning (ML) model to take a predictive decision on
the bandwidth allocated to streaming codes. Specifically, a
lightweight approach is employed, which uses only a simple
model and a single bit of additional feedback.

We analyze packet traces collected from thousands of video
calls from Teams and present three key observations in §3: (a)
Bursts of packet losses frequently arise. (b) Losses are often,
but not always, followed by a guard space of several frames
with no losses. (c) Codes employed in production (RS codes)
use a significant bandwidth overhead to recover lost packets
in real time, depleting the bandwidth for the original data.

We first evaluate Tambur in simulation over a large cor-
pus of traces from Teams (§5.2). We compare Tambur with
Teams’s FEC (“Block-Within,” a block code within a frame;
§5.1) and show that Tambur recovers 26.5% more frames with
35.1% less bandwidth overhead.

We also implement and integrate Tambur, several base-
lines (Block-Within and “Block-Multi,” a block code across

1Named to convey Taming burst losses.
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Figure 1: Tambur reduces the ratio of frozen frames to total
frames per-video by 78% and 26% compared to Block-Within
and Block-Multi, respectively, at a lower bandwidth overhead.

multiple frames) and several variants of Tambur (“Tambur-
full-BW,” which matches the bandwidth overhead of Block-
Within and “Tambur-0.9,” which reduces the bandwidth over-
head more at the cost of recovering fewer frames) with a
videoconferencing benchmark platform that we developed.
We then evaluate the schemes over an emulated network to
assess the impact on the QoE (§5.4). Tambur, Tambur-full-
BW, and Tambur-0.9 reduce the average frequency of video
freezes by 26%, 29%, and 17%, respectively, compared with
the better of Block-Within and Block-Multi. Fig. 1 shows
that these benefits hold across many percentiles. These bene-
fits highlight that Tambur improves the QoE, as it has been
shown [44,53,66] that video freezes have a detrimental effect
on user engagement.

In summary, our main contributions are to:
• Analyze thousands of packet loss logs for video calls

taken from a large commercial videoconferencing appli-
cation, and characterize their suitability for using stream-
ing codes. To the best of our knowledge, this is the first
work to evaluate the potential of streaming codes using
large-scale, real-world traces.

• Present Tambur, which bridges the gap between the the-
ory behind streaming codes and videoconferencing ap-
plications by (a) designing a new streaming code that is
well-suited to videoconferencing and (b) integrating it
with a lightweight ML model to take a predictive deci-
sion on the bandwidth allocated to streaming codes.

• Implement a new benchmark platform to enable research
on videoconferencing with an easy-to-use interface to
integrate and assess new FEC schemes. In addition, im-
plement Tambur, Block-Within, and Block-Multi in C++
and incorporate them into the benchmark platform using
the interface.

• Evaluate Tambur over a large corpus of production traces
through simulation, and show that it simultaneously re-
duces the frequency of non-recoverable frames and band-
width overhead by 26.5% and 35.1%, respectively.

• Evaluate Tambur over emulated networks and show sig-
nificant improvements over key metrics pertaining to
end-to-end QoE (e.g., reducing the frequency of freezes
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Figure 2: Two approaches for employing block codes: (a)
within each frame and (b) across multiple frames.

by 26% and the cumulative duration of freezes by 29%).

Overall, to the best of our knowledge, this work is the first
to establish that streaming codes can improve key metrics
relating to the QoE for videoconferencing. This work also
showcases the potential of a new form of FEC, streaming
codes along with learning-based bandwidth allocation, for
bandwidth-efficient loss recovery in videoconferencing. This
work poses no ethical issues.

2 Background and motivation

2.1 Conventional FEC and its challenges in
videoconferencing

Block codes. One of the most commonly used FECs is the
so-called “block codes.” The idea of block codes is to en-
code k data packets, ⟨D[1], . . . ,D[k]⟩ to r parity packets into
⟨D[1], . . . ,D[k],P[1], . . . ,P[r]⟩, so that the k data packets can
be recovered using a subset of the (k+ r) packets. When any
k of the (k+ r) packets suffice for recovery, the block code
is termed “maximally distance separable (MDS).” One of the
best known examples of MDS codes is the Reed-Solomon
(RS) block codes [55]. Other examples of block codes include
fountain (i.e., rateless) codes [40], or two-dimensional block
codes [67].

Traditionally, FEC applies to packets, but videoconferenc-
ing involves transmitting multiple packets for each video
frame. One natural solution is to apply a block code to the
data packets within each frame (Fig. 2a). The parity packets
are sent immediately after the final data packet of a frame. A
second approach is to apply a block code across the data pack-
ets of multiple frames (Fig. 2b) by sending all parity packets
after the final data packet of the last frame in the block. Our
analysis of the production packet loss traces (§3) from Teams
shows that the packet losses are bursty. Both approaches have
significant limitations for burst losses.
Limitations of block codes for videoconferencing. When
packet losses occur as bursts, the within-frame approach
wastes the redundancy sent in frames immediately follow-
ing a burst because it is useless for recovering the lost frames.

Although the multi-frame approach overcomes this problem,
it has two main drawbacks. First, the latency of recovering
losses is high due to waiting for the parity packets, which are
sent after the final frame in the block, to recover any packets.
The length of the block code must be short lest the latency
exceeds the real time deadline to play a frame, leading to an
increased bandwidth overhead and reduced robustness to burst
losses. Second, packets sent in rapid succession may be lost
if a router buffer is full. When a full router buffer coincides
with the final frame of a block, no lost packets are recovered.

The bandwidth consumed by parity packets of FEC can
be substantially higher than retransmission, even for modest
packet loss rates. Unlike retransmission, which only resends
lost packets, even an “optimal” FEC scheme does not know
which packets will be lost. Hence, it must send far more parity
packets than lost packets. For example, to prevent a video
freeze, at least one parity packet must be sent every ≈ 150ms
to cover the scenario of losing a data packet. However, this
parity packet is not used if there are no losses.

2.2 Streaming codes
A class of codes, known as “streaming codes” [5, 42, 43, 59–
61], specifically addresses burst losses and sequential com-
munication between a sender and a receiver. At a high level,
streaming codes avoid the limitations of within-frame and
multi-frame by (a) sending parity packets with each frame
and (b) using all parity packets received by the playback dead-
line of the final frame of a burst for recovering losses. We
describe the theoretical framework of streaming codes in de-
tail, provide an illustrative example, and then discuss how
it is a promising option for videoconferencing applications
impeded by a large gap between the framework and practice.

The streaming codes framework consists of the following.
(1) A sender that generates data packets sequentially at regular
intervals and transmits packets sequentially to a receiver. (2)
An adversarial packet loss channel that introduces burst losses
of length b followed by guard spaces of packet receptions.
(3) A requirement that the receiver recovers lost data packets
within a specified time. The data packet that arrives at the time
index i must be recovered by time index (i+ τ). We call the
parameter τ the “latency deadline.” After a burst, the guard
space must be at least τ packets (but longer guard spaces are
not needed since bursts are to be recovered within τ packets).

Sequential encoding. The sequential nature of encoding in
streaming codes is well suited for videoconferencing, wherein
a sequence of compressed frames are to be transmitted pe-
riodically (e.g., one every 33.3 ms for a video showing 30
frames per second). We will denote the symbols sent for the
ith video frame as D[i], where each symbol can be thought
of as a vector of bits.2 These symbols are distributed over

2More formally, a symbol is an element of a mathematical entity called a
finite field, and all operations are performed over finite fields using modular
arithmetic. For simplicity, readers can just assume the usual arithmetic.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation    955



Frame

[ 4]₀D +i

[ 4]₁D +i

[ 4]₂D +i

[ 4]₀P +i

[ 4]₁P +i

[ 3]₀D +i

[ 3]₁D +i

[ 3]₂D +i

[ 3]₀P +i

[ 3]₁P +i

[ ]₀D +2i

[ 2]₁D +i

[ 2]₂D +i

[ 2]₀P +i

[ 2]₁P +i

[ 1]₀D +i

[ 1]₁D +i

[ 1]₂D +i

[ 1]₀P +i

[ 1]₁P +i

[ ]₀D i

[ ]₁D i

[ ]₂D i

[ ]₀P i

[ ]₁P i

[ 2] recovers lost [ ] and [ 1]P i i+ iD D₂ ₂ +1

[ 3] recovers lost [ ] and [ ]P i + i iD D₀ ₁2

[ 4] recovers lost [ 1] and [ 1]P i i i+ + +D D₀ ₁3

i (lost) 1 (lost)+i 2+i 3+i 4+i

parity packet ( )Pdata ( )D

Figure 3: Recovering b = 2 lost frames starting in frame i
within a latency deadline of τ = 3 using a streaming code. For
each frame in the burst, all parity symbols sent τ packets later
recover its lost symbols.

one or more packets to be sent to the receiver. In addition,
some parity symbols, denoted as P[i], are transmitted in one
or more packets. These parity symbols are a function (linear
combinations) of the data symbols of the past few frames.

Sequential recovery. Under the streaming codes model, the
latency deadline parameter τ determines the delay in recov-
ering a lost packet: if D[ j] is lost, it must be recovered using
symbols from parity packets until P[ j+ τ]. Each video frame
must be recovered within a strict latency to be rendered in real
time. The latency deadline parameter τ is set according to the
frame rate and one-way delay to induce a suitable maximum
latency to recover lost frames. For example, if the maximum
tolerable latency is 150 ms (a standard value for real-time
video communication [33]), the one-way propagation delay is
50 ms, and a frame is encoded every 33.3 ms (i.e., at 30 fps),
τ could be set as 3 (= (150−50)/33.3).

An example of sequential loss recovery of a burst of length
2 starting in frame i within a latency deadline of τ = 3 us-
ing existing streaming codes (e.g., [5, 42, 43]) is shown in
Fig. 3. Each frame comprises the same amount of data. First,
the parity symbols of the packet sent immediately after the
burst recovers one-third of the missing data symbols of each
lost frame (i.e., D2[i] and D2[i+ 1]).Second, the remaining
lost data symbols of frames i and (i+ 1) (i.e., (D0[i],D1[i])
and (D0[i+1],D1[i+1]), respectively) are recovered with the
parity symbols sent in frames (i+3) and (i+4), respectively.

Streaming codes recover a burst loss by sequentially recov-
ering each frame in the burst within its deadline. For a burst
loss that encompasses b consecutive frames {i, . . . , i+b−1},
a data packet D[ j] in the burst is recovered using the parity
symbols of P[i+ b], . . . ,P[ j + τ]. This sequential nature of
the recovery of streaming codes allows them to use all parity
symbols that are received within the deadline. For example,
P[ j+ τ] is used to recover D[ j] after the latency deadline of
D[i] for i < j. In contrast, block codes recover all lost packets
together. Hence, the recovery occurs by the first lost frame’s
deadline (i.e., by the time the symbols of P[i+τ] are received),

wasting the parity symbols sent subsequently. This key dif-
ference enables streaming codes to attain significantly lower
bandwidth overhead; the longer the burst, the greater the ben-
efits of streaming codes. However, it also requires a guard
space of at least τ frames after the burst lest some frame not
be recovered with the latency deadline.

2.3 Challenges of using streaming codes for
videoconferencing

There are two main challenges in using streaming codes for
videoconferencing. First, significant gaps between the theoret-
ical models and practical systems render existing streaming
codes incompatible with videoconferencing applications. Sec-
ond, streaming codes’s effectiveness for videoconferencing is
untested on large-scale real-world traces. Hence, the poten-
tial of streaming codes improving QoE of videoconferencing
applications is yet unknown. These challenges are discussed
in more detail below.

Gaps between the existing model and videoconferenc-
ing applications. The existing practical work on streaming
codes [6,25], like the theoretical work they build upon [5,42],
is limited to settings where the amount of data to be transmit-
ted at each time instant is a fixed constant. However, videocon-
ferencing involves sending compressed video frames whose
sizes vary. Only a few streaming code constructions [59–61]
can handle this variability. However, as discussed in §2.2, ex-
isting streaming codes, including those in [59–61], consider
an adversarial loss model that imposes bursts of length b.
When applied for videoconferencing, the parameter b trans-
lates into the number of consecutive frames for which all
packets are lost. However, videoconferencing applications
frequently send multiple packets per frame, and often only
some of these packets are lost, as we show in greater detail in
§3 for packet loss traces from production. Existing streaming
codes are overly pessimistic because they can recover from
losing all packets for multiple consecutive frames. This re-
quirement imposes a significant bandwidth penalty, negating
the potential bandwidth savings of streaming codes. Stream-
ing codes are also vulnerable to recovery failures if there are
any losses in the guard space after a burst. But, in practice,
many bursts are not followed by such guard spaces (see §3.2).

Applicability of streaming codes in the wild. The benefits
of streaming codes for VoIP applications have been studied
using simulated losses under theoretical loss models, such as
the Gilbert-Elliott channel [23] and over traces [6,25], wherein
each frame is sent in one packet and all frames/packets are
of a fixed constant size. However, these results do not apply
to videoconferencing applications, which send (a) multiple
packets for each frame and (b) varying amounts of data per
frame. Streaming codes perform best when each burst occurs
across multiple frames and is followed by a guard space of
several frames without losses. A natural question is whether
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such losses arise in videoconferencing and if they can be
exploited via streaming codes. To the best of our knowledge,
no study of large-scale real-world packet losses establishes
the applicability of streaming codes in the wild. Furthermore,
establishing that streaming codes are viable to improve the
QoE hinges on improving several metrics relating to the QoE.
Yet an analysis of streaming codes’ impact on such metrics is
similarly lacking in the existing literature. Finally, the effect of
inter-frame dependencies on the benefits of streaming codes
has yet to be assessed, even though inter-frame dependencies
are prevalent in videoconferencing.

3 Packet loss in the wild

Logs (specifically, packet loss traces) from Microsoft Teams
were collected from a random sample of calls over two weeks.
One week’s traces were held out as a test set for the evaluation.

Teams uses FEC only after a packet loss occurs, which is
fairly standard in the industry [64] to avoid wasting bandwidth
for the many calls that do not experience any loss. We limit
our study to traces with at least two instances of loss since our
focus is on improving scenarios after FEC is activated (i.e.,
FEC is turned on after the first loss and then used to recover
the second). Our analysis involves approximately 9700 traces,
which constitute 16% of all the traces. Studying these traces
sheds light on the tail performance, which is crucial for real-
world commercial applications. Each trace corresponds to one
call and contains the size, sequence number, and send/receive
timestamps for each received packet, as well as whether it is
a parity packet or data packet; lost packets are identified via
missing sequence numbers. Due to the application’s data col-
lection method, the traces are limited to the final one minute
of the call. Although the logs are for packets, we approximate
frame-level information by combining the logs with Teams’s
packetization logic and have corroborated with the Teams
engineers that this approximation is good.

3.1 FEC metrics
Teams employs an RS block code within each frame and
varies the bandwidth overhead based on infrequent feedback
from the receiver on packet losses. We will denote the FEC
scheme used by the application simply as “Block-Within.”

We evaluate three metrics over the traces. First, the percent
of video frames using FEC for each videoconferencing call
(Fig. 4a). The 25th, 50th, and 75th percentile for the percent
of video frames over each trace using FEC are 13%, 48.8%,
and 70% of calls respectively, indicating that FEC is applied
to a significant portion of the frames. Second, the percent of
decoding failures for video frames over all frames for each
videoconferencing call (Fig. 4b). The 25th, 50th, and 75th
percentile for the percent of decoding failures of frames are
0.6%, 1.8%, and 6.1% of calls. Note that the decoding failures
should be kept below around 1% to provide high QoE [33].
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Figure 4: CDFs over the traces from Teams of (a) how often
FEC is used to encode frames to protect against packet loss,
(b) how often the lost packets are not decoded, and (c) the
bandwidth overhead of parity packets.

As such, decoding failures are prevalent enough to tangibly
negatively impact the QoE, prompting the need for a more
effective FEC mechanism. Third, the bandwidth overhead
for each call (Fig. 4c). The 25th, 50th, and 75th percentile
for the bandwidth overhead are 4.2%, 24%, and 45% of calls.
Thus, reducing the bandwidth overhead will free a significant
portion of the bandwidth for these calls.

3.2 Network quality

We analyze the packet losses to assess streaming codes’ suit-
ability for real-world videoconferencing applications. To the
best of our knowledge, this is the first work to analyze large-
scale real-world packet loss traces from this perspective. We
analyze three key metrics of losses in Fig. 5. (1) The packet
loss rate for each trace (Fig. 5a). (2) The distribution of lengths
of bursts of packets measured over all of the calls (Fig. 5b).
(3) The distribution of the lengths of bursts of frames (i.e., the
number of consecutive frames with at least one packet lost)
measured over all of the calls (Fig. 5c). This metric indicates
streaming codes’ suitability, as they are most effective when
bursts of lost packets encompass multiple frames (see § 2.2).

The mean percent of packets lost over the traces is 7%. It
is higher than the packet loss in the FCC report [15] since we
focus on the traces where FEC is employed. If the other traces
from Teams are also considered, the mean packet loss over all
traces is 1.7%, which is comparable to the FCC measurement.
In earlier studies of end-to-end Internet packet loss, loss rates
tended to vary over time and between ISPs and access net-
work technology [8, 18, 24, 54], with ISP queue management
policies impacting the loss patterns seen by applications. As
discussed in [24], in home broadband networks, loss rates
are often less than 1% for long periods, with infrequent pe-
riods of very bursty packet loss. Similar patterns are seen in
mobile networks, where loss rates tend to increase during
handovers [8], and much longer packet loss bursts are seen.
Our traces from Teams, described in this section, show similar
behavior, with a large number showing very low loss rates,
with a long-tail of traces showing extremely bursty packet
loss. Specifically, 38.1% of the instances of packet loss in-
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Figure 5: Packet loss is prominent (e.g., Fig 5a shows 1−10%
packet loss for most traces) and often occurs as bursts across
consecutive packets (Fig 5b) or frames (Fig 5c).

volve at least two consecutive packets being lost (Fig. 5b), and
38.4% of instances of packet loss encompass more than one
video frame. Such loss patterns can be efficiently recovered
by streaming codes (§3.3).

There is also a trade-off between the bandwidth overhead
(i.e., the bandwidth used for parity packets) and the proba-
bility of decoding failure. The bandwidth overhead cannot
be prohibitively high lest there be insufficient bandwidth for
the original data. Consequently, the frequency of decoding
failures for frames is non-negligible despite using FEC.

3.3 Potential of streaming codes

Recall from §2.3 that streaming codes are most effective when
(a) packet loss occurs as a burst across multiple consecutive
frames and (b) the burst loss is followed by a guard space
of multiple consecutive frames with no losses. We formalize
two metrics to capture these conditions. We then show that
the packet losses in the traces exhibit these features.

Measuring bursts. The bandwidth overhead needed to de-
code a burst depends on the fraction of the packets being lost
when losses occur across multiple frames. We introduce a
new metric to formalize this notion.

Definition 1 (Multi-frame burstiness) Suppose a burst oc-
curs across two or more frames, i through j, over which s
packets are sent. If l of the s packets are lost, the multi-frame
burstiness is defined as l/s.

For example, suppose Tambur sends packets
(D0[i],D1[i],D2[i]) and (D0[i + 1],D1[i + 1]) over frames i
and (i+1), respectively. Suppose D1[i],D2[i], and D0[i+1]
are lost. Then the multi-frame burstiness is 3/5. The
multi-frame burstiness is always positive since at least one
packet is lost for each frame in the burst. The maximum
value of 1 occurs when all packets are lost for all frames
in the burst. High values correspond to situations of a high
percentage of the packets being lost for multiple consecutive
frames. The value of the multi-frame burstiness directly
relates to the minimum bandwidth overhead needed for any
code to decode lossy frames in real time.
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Figure 6: The CDFs over the traces of the (a) the multi-frame
burstiness (for traces with at least one burst over 2+ frames),
and (b) the guard space sufficiency.

Measuring guard spaces. Streaming codes can reduce band-
width overhead for scenarios where a burst of packet losses
is followed by a guard space of at least τ frames that expe-
rience reliable transmission, where τ is the latency deadline
parameter (§2). We now introduce a new metric to measure
the extent to which the guard spaces exhibit this property.

Definition 2 (Guard space sufficiency) The τ-guard space
sufficiency is the fraction of instances in which one or more
frames with packet loss are followed by at least τ consecutive
frames which experience lossless transmission.

The value of the guard space sufficiency varies from 0 to 1. It
is negatively related to the bandwidth overhead needed when
using streaming codes. High values for the guard space suffi-
ciency indicate that the bandwidth overhead can be reduced.

Suitability of streaming codes. The multi-frame burstiness
and 3-guard space sufficiency is evaluated over the traces in
Fig. 6.3 In Fig. 6a, the value of the multi-frame burstiness is
shown to vary over the range 0 to 1, with values at the 25th,
50th, and 75th percentiles of 0.32, 0.5, and 0.67 respectively.
This indicates that the bandwidth overhead needed when using
streaming codes varies over the traces, as expected. For higher
values, more bandwidth must be allocated to redundancy to
decode the losses. For lower values, it is possible to make do
with less bandwidth used for redundancy. The guard space
sufficiency is evaluated over the traces in Fig. 6b, and its
values at the 25th, 50th, and 75th percentiles are 0.73, 1.0,
and 1.0 respectively. These values imply that streaming codes
are often suitable. For example, for the traces with a value of
1.0, every single time a burst occurs across multiple frames,
streaming codes could have been used to decode the losses
with the optimal amount of bandwidth overhead. Yet, the low
values indicate insufficient guard spaces for using existing
streaming codes to reduce the bandwidth overhead, as they
are vulnerable to losses in the guard space.

3Recall from § 2.2 that τ = 3 applies for a realistic choice of parameters,
in which case a guard space of length 3 is beneficial for loss recovery with
streaming codes.
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3.4 Key findings
Bursts of packet losses followed by guard spaces arise fre-
quently and are conducive to streaming codes. However, this
is not always the case. Bursts are sometimes followed by
short guard spaces or involve significant packet loss, in which
case the bandwidth overhead cannot be reduced via streaming
codes. Hence, integrating streaming codes into real-world
applications requires (a) predicting whether the bandwidth
overhead can be reduced without incurring decoding fail-
ures, (b) leveraging partial losses in a frame (i.e., losses of
only some packets per frame rather than all packets) and (c)
adding robustness to losses in the guard space.

4 Tambur

We present Tambur, which exploits the potential discussed
in §3.3 and addresses the challenges discussed in §2.3 by
(1) using an ML model to take predictive decisions on the
bandwidth overhead, and (2) designing a new streaming code
suitable for videoconferencing given any setting for the band-
width overhead.4 First, an ML model makes a predictive de-
cision on the number of parity symbols to allocate for each
frame. This helps to set the bandwidth overhead to match the
network conditions. Second, the parity symbols are defined to
provide (a) sequential recovery of bursts over multiple frames
while exploiting partial losses, (b) recovery of occasional
losses within a single frame immediately, and (c) robustness
to a small amount of loss in the guard space after a burst.
Third, a new methodology is employed to distribute each
frame’s data and parity symbols over multiple packets. The
design of the parity symbols and their distribution across pack-
ets constitute Tambur’s streaming code. During loss recovery,
Tambur uses the received packets from the frames involved
in a burst (i.e., partial losses), which allows for a lower band-
width overhead than is possible for existing streaming codes
that ignore such packets.

Fig. 7 shows how Tambur fits into the stack of a videocon-
ferencing application. The streaming encoder encodes data
from compressed frames into data packets and parity pack-
ets. A Bandwidth Overhead Predictor periodically selects
bandwidth overhead for each frame using a predictive (ML)
model based on the losses observed at the decoder and sends
the value to the encoder. The streaming decoder uses parity
packets to recover lost data packets. We will now describe
these components in detail.

4.1 Tambur’s streaming code
We present the code in two parts: encoding and decoding.
Encoding. We illustrate how Tambur encodes the ith frame.
Fig. 8 shows an example of encoding for τ = 3. The data

4The new streaming code builds upon recently developed theoretical
streaming codes [60, 61] while overcoming the limitations discussed in §2.3.
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Figure 7: Overview of Tambur. The components in green are
specific to Tambur.
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Figure 8: Encoding for τ = 3. Tambur splits frame i evenly
into (V [i],U [i]) and sends them over data packets. Also, Tam-
bur sends parity packets for recovering V [i−3], . . . ,V [i],U [i]
and U [i−3] and reserves space for parity symbols of frame
(i+3).

symbols of this frame, D[i], are sent in data packets, and the
parity symbols, P[i], are sent in parity packets. The sizes
of the packets are maximized subject to (a) not exceeding
an MTU (for example, 1500 bytes in our experiments) to
be equal. The previous value of the Bandwidth Overhead
Predictor determines how many parity symbols are allocated
for frame i. These parity symbols will be sent τ frames later
(see “reserved space” in Fig. 8). The number of parity symbols
sent for frame i was determined by the size of frame (i− τ).

Next, we describe how parity symbols are formed. The
symbols of P[i] are linear combinations of the symbols of
the (τ + 1) frames, {D[i], . . . ,D[i − τ]}. To define the par-
ity symbols, it helps to view the data symbols of the asso-
ciated (τ+1) frames as being divided evenly into two parts as
D[ j] = (V [ j],U [ j]), for j ∈ {i, . . . , i− τ}. Fig. 8 shows these
components in blue and green, respectively.

The symbols of P[i] are carefully designed linear combi-
nations of the symbols of V [i], . . . ,V [i− τ],U [i], and U [i− τ].
Specifically, P[i] is sum of three quantities: P[i] := P1[i] +
P2[i] +P3[i]. The symbols of P1[i] are linear combinations
of the symbols of V [i− τ], . . . ,V [i−1]. The symbols of P2[i]
are linear combinations of the symbols of U [i− τ]. The sym-
bols of P3[i] are linear combinations of the symbols of U [i]
and V [i]. All linear combinations are carefully chosen to be
linearly independent linear equations.5

Decoding. We describe the decoding process in two parts:

5It suffices to take linear equations from three different Cauchy matrices.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation    959



[ 1] and [ 2] recovers lost [ ] and [ 1]P i P i V V i+ + +i1

[ 3] recovers lost [ ]P i U+ i2

[ 4] recovers lost [ 1]P i U i+ +3

lost packetparity packet ( )Pdata ( )Vdata ( )U

Frame

1

1

2

3

1

1 2 3

1

3
1
2

i 1+i 2+i 3+i 4+i

Figure 9: Decoding a burst across 2 frames within τ = 3
frames delay using Tambur’s streaming code. Data symbols
labeled 1, 2, and 3 are decoded using the parity packets with
the same label.

(1) occasional packet losses and (2) burst of packet losses.
Let all frames before the loss be decoded. First, suppose that
packet loss is rare, and the size of P[i] exceeds the number of
symbols lost for frame i. Then P[i] suffices to decode the ith
frame (specifically, by solving a system of linear equations).

Second, consider a burst of packet losses across two con-
secutive frames for τ = 3, as is shown in Fig. 9. Packet losses
(red-dashed border) span frames i and (i+1). For each frame
i, the blue, green, and brown parts represent U [i], V [i], and P[i],
respectively. First, V [i] and V [i+1] are both decoded using
P[i+2], which consists of independent linear combinations
of (a) the symbols of V [i] and V [i+1], and (b) the (received)
symbols of V [i−1], U [i−1], U [i+2], and V [i+2]. Second,
for j ∈ {i, i+1}, U [ j] is decoded using P[ j+3], which con-
sists of independent linear combinations of (a) the symbols of
U [ j], and (b) the (available) symbols of V [ j−3], . . . ,V [ j], and
U [ j]. The key to this methodology is that U [i+1] is not recov-
ered by the latency deadline of D[i] (i.e., (i+3)). This enables
using extra parity symbols (i.e., P[i+4]) to recover U [i+1]
while still decoding each data packet within τ = 3 frames.
Appendix A presents the general case. If decoding fails, the
receiver queries the sender to generate a new keyframe (i.e., a
self-sufficient frame) to handle inter-frame dependencies.

There are three key differences from existing streaming
codes for videoconferencing: (1) The data symbols and parity
symbols of a frame are sent over multiple packets instead of
a single packet. (2) Each frame’s parity packets are designed
such that they are useful in recovering its lost data packets (in
addition to being useful in recovering previously sent frames).
(3) The code is flexible enough to allow per-frame bandwidth
overhead to be set using the Bandwidth Overhead Predictor.

4.2 Bandwidth overhead predictor
At a high level, Tambur makes use of a predictive model to
determine the bandwidth overhead employed by its streaming
code (i.e., the amount of “reserved space” in Fig. 8). This
predictive model takes as input a feature vector computed by
the receiver periodically (e.g., every two seconds), dubbed
a loss-pattern report. The predictive model’s output is then
sent to the sender to set the bandwidth overhead for each
frame for Tambur’s streaming code until the next loss-pattern
report is received. For example, a bandwidth overhead of 50%
means that if frame i comprises 1000 bytes, 500 bytes of
parity symbols are allocated.

Loss-pattern report. Let P be the bitmap of packet losses
since the last loss-pattern report, where 1 denotes a loss and
0 is a reception. Let F be a bitmap over all frames since the
last loss-pattern report of whether at least one of the frame’s
packets was lost. The loss-pattern report consists of the fol-
lowing 13 quantities, all of which can be computed in linear
time with a single sequential pass over F and P.

• Multi-frame burstiness and guard space sufficiency (§3).
• Fraction of losses for P and F .
• Mean number of consecutive losses for P and F .
• Mean length of guard spaces for P and F .
• Burst density [12] and gap density [12] for P and F6.
• A score employed by Teams to choose its bandwidth over-

head, which is based on the observed fraction of packet
losses and lengths of bursts.

Bandwidth overhead prediction via weighted classifica-
tion. Tambur uses an ML model to determine the bandwidth
overhead allocated per frame based on the recent loss condi-
tions. As discussed above in § 4.1, Tambur’s streaming code
enables such an approach by allowing fine-grained tuning of
the bandwidth overhead. To keep the model simple, we select
two options for the bandwidth overhead. This approach easily
generalizes to more than two values for bandwidth overhead
by using a multiclass classifier to enable tuning the bandwidth
overhead used by Tambur. In our implementation, we use a
small neural network (discussed further in §4.3), although any
methodology could be substituted.7

The ML model is trained with different weights for the
two classes based on prioritization of bandwidth savings ver-
sus minimizing decoding failures. Essentially, the higher the
weight for the class corresponding to the higher bandwidth
overhead, the greater the frequency of decoding frames, but
the lower the reduction in bandwidth overhead. Videoconfer-
encing service operators can use these weights as a knob to
prioritize reducing decoding failures or bandwidth overhead.

Neural network details. Binary classification is conducted
using a small fully connected neural network with one hid-
den layer. The input is the values of the 13 metrics for the

6The parameter gMin [12] is set to be 1 and τ for P and F respectively.
7We found ML models to outperform heuristics empirically.
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previous 3 loss-pattern reports. The cross-entropy loss is ap-
plied, and by default the weights for mistakenly reducing the
bandwidth overhead (i.e., causing a decoding failure) and not
reducing the bandwidth overhead by half (i.e., failing to save
bandwidth) are 0.999 and 0.001, respectively. We tested vari-
ous number of hidden neurons (e.g., 100, 1000, and 10000)
and selected 1000 as the smallest option to reach the point of
diminishing returns. The model is implemented and trained
in PyTorch offline using the traces based on the optimal de-
cision for reducing the bandwidth overhead without causing
decoding failures. During inference, it is instantiated in C++.

4.3 Implementation

We implemented Tambur in C++ as part of a new independent
library called Tambur that any videoconferencing application
can use.8 At the sender, Tambur takes successive compressed
frames as input and outputs data packets and parity packets. At
the receiver, Tambur decodes lost packets by solving a system
of linear equations using the symbols of the received packets.
When packets are lost, we combine properties of streaming
codes with an open-source min-cut/max-flow algorithm [11]
to determine which data symbols can be decoded using which
parity symbols in negligible time (see Appendix B). Data is
then decoded by solving the smallest full-rank systems of
linear equations.

We use a small header to provide frame-level information
needed for decoding. This includes sequence numbers for
packets and frames and relative positions of a packet within
a frame and amongst parity packets. The streaming decoder
also needs the size of the lost frame in order to decode it (even
when all packets corresponding to the frame are lost); hence,
we encode the sequence of frame sizes using a streaming code
and send one parity symbol of this code in each packet.

The library provides an interface for rapidly prototyping
new FEC schemes. We used this interface to implement the
baselines from §1 (i.e., Block-Within and Block-Multi).

The core arithmetic of linear encoding and solving a sys-
tem of linear equations for decoding is done using Jerasure
2.0 [52], an open-source library in C/C++ with modules for
key operations of erasure coding. Jerasure 2.0 is built on
top of the GF-Complete library [51], which uses Intel SIMD
instructions to perform Galois Field arithmetic quickly. Tam-
bur involves encoding data into “coding blocks” of 256 bytes,
each of which uses the same linear equations. Extending Tam-
bur to use hardware offload to encode and decode frames is a
potential avenue of future work.

Integration with videoconferencing. To validate Tambur’s
effectiveness in the real world, we integrate it with Ringmas-
ter9, a newvideoconferencing platform that emulates one-on-
one video calls for benchmarking FEC schemes. Ringmaster

8https://github.com/Thesys-lab/tambur
9https://github.com/microsoft/ringmaster

is implemented in ∼4000 lines of C++. Its video sender reads
raw frames from an input Y4M video file on disk at a precise
frame rate (e.g., 30 fps) and compresses them with the VP9
encoder in the libvpx [1] library using similar codec con-
figuration as in WebRTC [2]. A user-provided FEC scheme
provides parity data for the encoded frames, which is sent over
UDP after packetization to the video receiver. Upon receiving
the frames, the video receiver applies the FEC decoder and
VP9 decoder sequentially to decode and render the original
video frames. In addition, Ringmaster allows for requesting
new keyframes, e.g., when the receiver fails to recover a video
frame due to excessive loss of packets and thus requests the
sender to encode a new keyframe so as to resume the video.
At the end of the automated call, QoE metrics are computed
by aggregating logs from both endpoints, which record the
timestamps when each frame is encoded or decoded, along
with its frame ID, size, FEC bandwidth overhead, etc.

Ringmaster provides clean and modular interfaces that we
use to integrate it into Tambur. Combining Ringmaster with
Tambur enables benchmarks of FEC schemes’performance
featuring QoE metrics, e.g., video freezes, per-frame de-
lay, rendered frame rate, for FEC schemes implemented via
Tambur’s interface. Furthermore, Ringmaster also allows re-
searchers to isolate the impact of FEC and disable modules
that interfere with FEC, such as bandwidth estimation [13]
and packet retransmission.

5 Evaluation

To assess whether Tambur can improve the QoE, we ask:
• Can Tambur provide significant benefits for metrics relat-

ing to FEC on real-world losses?
• Do the benefits of Tambur lead to a higher QoE?

5.1 Experimental methodology and highlights

Videoconferencing application parameters. In our experi-
ments, we aim for a maximum tolerable latency of 150 ms to
meet industry recommendations [33], which is a fairly stan-
dard value for interactive video. The frame rate is taken to
be 30 fps, which is a typical value in videoconferencing. The
inter-frame arrival time for 30 fps is 33.3ms. Allowing for a
one-way frame delay of 50 ms leaves room for a decoding
delay of around 100ms. Thus, the parameter τ can be at most
3 (frames) for the end-to-end latency (i.e., 33.3τ+50) to be at
most ≈ 150 ms. The two options for the bandwidth overhead
of Tambur are to match or use half of the bandwidth over-
head of the baseline coding scheme, Block-Within, which is
introduced next.

Coding schemes. We evaluate six coding schemes. (1) Block-
Within (Fig. 2a), which applies RS codes within a frame.
This scheme is employed in production by Teams. (2) Block-
Multi (Fig. 2b) which applies RS codes across (τ+ 1) = 4
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frames. RS codes are optimal block codes, and hence the
above two baselines outperform other block codes such as
fountain or rateless codes in recovering losses and band-
width overhead. (3) Tambur-full-BW, which is a variant
of Tambur that matches Block-Within’s bandwidth overhead.
(4) Tambur-0.9, which is Tambur with the neural network
trained to prioritize bandwidth savings more by decreasing the
weight of misclassification from 0.999 to 0.9 in the loss func-
tion. Thus, Tambur-0.9 prioritizes reducing the bandwidth
overhead more than Tambur. (5) Tambur-low-BW, which
is a variant of Tambur that uses 50% of the bandwidth over-
head of Block-Within. (6) Oracle, which optimally selects
between Tambur-full-BW, Tambur-low-BW, or Block-Within.
Each time the sender obtains feedback from the receiver, the
Oracle selects the scheme with the smallest bandwidth over-
head among the scheme(s) that recover the most frames. This
choice never causes a non-recoverable loss. Consequently,
the Oracle always recovers at least as many frames as Block-
Within, Tambur, and Tambur-full-BW. The bandwidth over-
head of Block-Within and Block-Multi is never reduced to en-
sure a fair comparison of Tambur’s loss recovery capabilities
and because both baselines already perform worse than Tam-
bur despite using the full bandwidth overhead. Like Tambur,
Block-Within and Block-Multi send feedback to the sender
once FEC decoding has failed to trigger a new keyframe as a
fallback mechanism to handle inter-frame dependencies.

Metrics. We evaluate the following metrics: (1) Percent
of non-recoverable frames, which is the percentage of com-
pressed frames that are not recovered. (2) Bandwidth over-
head for FEC. (3) Percent of non-rendered frames, which is
the percent of frames that are not played by the receiver—
this includes non-recovered frames and recovered frames that
depend on non-recovered frames. (4) Latency, which is the
duration between a frame being created and rendered. (5) Fre-
quency of freezes, which is the number of times the receiver’s
video is frozen. (6) Duration of freezes, which is the cumu-
lative length of time where the receiver’s video is frozen.10

We calculate these metrics only for the frames where FEC is
applied (i.e., where FEC affects the quality). We compute one
value per call (e.g., median duration of freezes, bandwidth
overhead, etc.) and then consider the percentiles over these
values. For latency, we consider all frames over all calls.

QoE is difficult to measure precisely with so-called “QoE
models” [68] because it depends on video-specific properties
(e.g., in sports, video quality during gameplay matters more
than during timeouts). But several works [7, 21, 37] have
shown that key metrics for QoE (e.g., frequency of freezes,
duration of freezes, bandwidth, etc.) impact the mean opinion
score—the gold standard measure of QoE. These metrics also
affect user interactions (e.g., users watch more video when
there are fewer freezes). In fact, [19] showed that cumulative

10We use the definition of freezes and duration of freezes from the most
recent (unofficial) draft of identifiers for WebRTC’s statistics [10].

freeze duration is crucial for QoE, as well as the importance
of bitrate and frequency of video freezes for live video.

Offline evaluation. We evaluate the performance of Block-
Within, Tambur, Tambur-full-BW, Tambur-0.9, Tambur-low-
BW, and Oracle over the test set of traces from Teams de-
scribed in §3, which was held out from the previous analyses.
The packet logs provide the performance of Block-Within. We
make two safe assumptions to evaluate the remaining schemes
over the traces: (a) modifying the payload of a packet, but
not its size, would not change whether it is lost or received;
(b) reducing the size of a packet’s payloads would not incur
any new packet losses. Each data packet is sent identically as
in the trace, the payloads for the parity packets are changed,
the sizes of the parity packets are sometimes reduced, and
the bitmap of packet losses from the trace is used. To satisfy
the assumptions, we must force Tambur to send the number
of parity symbols allocated for each frame within the frame
(rather than delayed by τ frames), which we expect to degrade
Tambur’s performance. This enforcement alters the number
of parity packets sent under Tambur but not how their sym-
bols are defined. Block-Multi is excluded because it sends all
parity packets after the final data packet of the final frame of
the block, so its performance cannot be fairly simulated using
the production traces.

Online evaluation. We evaluate prototype implementations
of Block-Within, Block-Multi, Tambur, Tambur-full-BW, and
Tambur-0.9 integrated with Ringmaster (the videoconferenc-
ing benchmark platform described in §4.3) via network emu-
lation using Mahimahi [46] while simulating a Gilbert-Elliott
(GE) [23] loss model over a dataset of 80 videos. Specifi-
cally, we evaluate 20 video calls from [16,47] at four constant
bitrates each (namely, 500,1000,1500, and 2000 kbps) to iso-
late the effect of FEC. The bandwidth overhead is set to 50%
for Block-Within (likewise, for Block-Multi and Tambur-full-
BW).11 The GE loss model is a standard loss model which
is a Markov model with two states: “good” and “bad,” each
with an associated probability of packet loss. For a fair and
realistic comparison, different coding schemes must experi-
ence the same distribution of burst losses at the frame level
even though they send differing numbers of packets per frame.
Therefore, we consider transitions between the states occur-
ring once at the start of every frame (i.e., once every 33.3 ms)
rather than a transition between states every packet, which is
commonly used in the literature when only one packet is sent
per frame. Packets within each frame are lost independently
with the same probability. The modified GE channel can be
viewed as a buffer overflowing for a short period, as can arise
from on/off characteristics of traffic [49]. Appendix C details
how we set the parameters of the GE model based on the
losses from the traces.

Result highlights.

11The bandwidth overhead is sometimes slightly higher for all schemes
due to rounding and ensuring at least one parity packet is sent per frame.
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Figure 10: CDFs for the percent of non-recoverable frames for
the 55th through 95th percentiles and the bandwidth overhead
for the offline evaluation.

• In offline evaluation, Tambur reduces the frequency of
non-recoverable frames by 26.5% while using 35.1% less
bandwidth overhead.

• In online evaluation, Tambur reduces frequency of non-
rendered frames, frequency of freezes, and duration of
freezes by 28%, 26%, and 29%, respectively compared
to Block-Multi, and by 73%, 78%, and 77% compared to
those of Block-Within. Block-Multi has a significantly
higher latency than Block-Within (see Fig. 13b).

• Modest memory overhead and median encoding and de-
coding times of 575 KB, 1.7ms, and 3.4ms, respectively.

5.2 Offline evaluation

We assess only the frequency of non-recoverable frames and
the bandwidth overhead for offline traces because the remain-
ing metrics are unavailable. Fig. 10a shows the CDF of the
percent of non-recoverable frames from 55th to 95th per-
centiles over the traces. These percentiles correspond roughly
to the 92nd to 99th percentile over all traces. The Oracle re-
duces the total number of non-recoverable frames by 44.2%
compared to Block-Within and reflects an upper bound on
performance. Tambur-full-BW reduces the frequency of non-
recoverable frames by 33% compared to Block-Within, indi-
cating the potential improvements of using streaming codes.
In contrast, Tambur-low-BW increases the frequency of non-
recoverable frames by 34.7% compared to Block-Within, indi-
cating the need for more sophisticated methods to reduce the
bandwidth overhead without incurring a significant penalty
in non-recoverable frames. By using a predictive model to
determine the bandwidth overhead, Tambur reduces the band-
width overhead by 35% while simultaneously reducing the
number of non-recoverable frames by 26.5% compared to
Block-Within (Fig. 10b). §5.3 summarizes the spectrum of
bandwidth savings versus recovering frames for Tambur based
on tuning the associated weight parameter.
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Figure 11: Sensitivity analysis of the weights for the classes
used in the predictive model for the frequency of non-
recoverable frames and bandwidth overhead over all of the
frames where FEC is used in the traces.

5.3 Sensitivity analysis

There is an inherent trade-off in performance between the
non-recoverable frames and bandwidth overhead metrics. The
ML model for Tambur is trained using a loss function with
a weight of 0.999 on avoiding recovery failures and the re-
maining weight (i.e., 0.001) on saving bandwidth overhead
(§4.3). Fig. 11 shows the impact of this parameter on the
frame recovery performance of Tambur with the weight set
to 0.9 (i.e., Tambur-0.9) and to 0.5. The improvement in
non-recoverable frames for the two schemes are respectively
21.9% and 1.7%. The reduction in the bandwidth overhead is
respectively 40.3% and 45.2%. By contrast, recall that Tam-
bur leads to a 26.5% improvement in non-recoverable frames
and reduces the bandwidth overhead by 35.1%. Reducing the
value of the parameter reduces the frequency of recovering
frames and increases the reduction in the bandwidth overhead.
Videoconferencing service operators can use these weights as
a knob to prioritize one metric over another.

5.4 Online evaluation

Next, we establish Tambur’s potential to improve the QoE. To
facilitate an easy comparison with the offline evaluation, we
show the frequency of non-recoverable losses and the band-
width overhead (as in §5.2) in Fig. 12. On average, Tambur
reduces the number of non-recoverable frames by 69% com-
pared to Block-Within and 34% compared to Block-Multi.
Tambur-0.9 reduces the number of non-recoverable frames by
65% compared to Block-Within and 26% compared to Block-
Multi despite Block-Multi’s much higher latency (Fig. 13b).
The results differ slightly from the offline evaluation at the
lower percentiles because of setting the parameters of the
channel based on average loss statistics over all the traces.
This significantly reduced the frequency of calls with low loss
rates where any coding scheme suffices to recover nearly all
frames (i.e., sophisticated FEC schemes are unnecessary).

Tambur—which is conservative in risking recovery failures
to save bandwidth—reduces the bandwidth overhead by 3%
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Figure 12: CDFs for the percent of non-recoverable frames
and the bandwidth overhead for the online evaluation.

on average of the calls. In contrast, Tambur-0.9 reduces the
bandwidth overhead by an average of over 8%. These results
reflect both schemes reducing the bandwidth overhead sig-
nificantly on some calls but only negligibly on many others,
which is expected given the loss rates of most calls. Tambur-
0.9’s bandwidth savings are especially pronounced at the
lower percentiles (e.g., 31% at the 10th percentile and 15% at
the 20th percentile). Tambur-0.9 provides a win-win by both
recovering more frames and saving bandwidth despite the
online evaluation reflecting out-of-sample performance for its
neural network, which was trained offline over the production
traces. The results further validate the trade-off between the
bandwidth overhead and recovering frames discussed in §5.3.

Next, we examine the percent of non-rendered frames in
Fig. 13a; recall that fewer frames are rendered than recovered
due to inter-frame dependencies. Tambur reduces the fre-
quency of failing to render frames compared to Block-Multi
and Block-Within by an average of 28% and 73%, respec-
tively. Tambur does worse than Block-Multi at the tail, but this
only occurs after all schemes have a failure rate above 23%.
Thus, all schemes should employ more redundancy. Tambur-
0.9 decreases the frequency of failing to render frames by
an average of 70% and 20% compared to Block-Within and
Block-Multi, respectively. Tambur-0.9 modestly increases the
frequency by 1% at the 75th percentile compared to Block-
Multi. Overall, the rate of rendering frames can be improved
while simultaneously reducing the bandwidth overhead for
most calls. The results are the first to establish the benefits of
streaming codes when there are inter-frame dependencies.

Fig. 13b shows that the end-to-end latency is within
the upper limit of approximately 150ms for all schemes.
Block-Within’s latency is slightly lower due to a shorter en-
code/decode time and always recovering rendered frames
using the parity of the same frame (see Fig. 15 and Fig. 16
in Appendix D); Tambur decodes 87% of frames without ex-
tra frames versus 88% for Block-Within, so the extra latency
from the waiting for extra frames should really be compared to
Block-Within failing to decode at all. We argue that Tambur’s
small cost (e.g., an extra 1.7ms to encode and 3.4ms to decode
at the median) is worthwhile due to substantial improvements
across the remaining QoE metrics. We also note that our im-
plementation of Tambur’s streaming code is not yet optimized
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Figure 13: Tambur renders significantly more frames than
Block-Multi and with lower latency. Tambur’s modestly
higher latency than Block-Within is more than offset by the
improvement in rendering frames.12

for fast encoding/decoding; hence, we believe it can be signif-
icantly faster. Our goal is to establish that Tambur’s streaming
code is practical enough for videoconferencing applications.

Recall from Fig. 1 that Tambur reduces the frequency of
freezes by 78% and 26% compared to Block-Within and
Block-Multi, respectively, and Tambur-0.9 reduces the fre-
quency of freezes by 75% and 17% compared to the two
respective baselines. Fig. 14a shows that Tambur and Tambur-
0.9 each reduce the median duration of freezes compared to
Block-Multi by 30ms on average. Tambur and Tambur-0.9
each have a 90ms longer median duration of freezes than
theBlock-Within because Block-Within has over 300% more
freezes than Tambur does. Many of the extra freezes are short,
reducing Block-Within’s median value to below Tambur’s.

Tambur-0.9 reduces the cumulative duration of freezes by
an average of 69% compared to Block-Within. The cumula-
tive duration of freezes is 17% lower for Block-Multi than
for Tambur-0.9 despite Tambur-0.9 having on average 11%
shorter median durations of freezes and 17% fewer freezes.
While the combined effect of the frequency and duration of
freezes on the QoE for Block-Multi and Tambur-0.9 are simi-
lar, recall that Tambur-0.9 also improves the bandwidth over-
head and renders more frames for most traces. As such, we
expect Tambur-0.9 to provide an overall higher QoE. Tambur
has an average of 77% and 28% shorter cumulative durations
of freezes than Block-Within and Block-Multi, respectively,
which is a clear win. Tambur, Tambur-0.9, and Tambur-full-
BW exhibit higher cumulative durations of freezes at the tail
than Block-Multi. We argue that this matters less because the
tail QoE is already bad, indicating that all schemes needed
more bandwidth overhead. Appendix E explains how this
phenomenon is an artifact of the implementation and includes
our proposed a solution.

The benefits across QoE metrics of Tambur, Tambur-full-
BW, and Tambur-0.9 suggest a markedly improved QoE com-
pared to Block-Within and Block-Multi. Without using ML
to reduce the bandwidth overhead, Tambur-full-BW offers a
substantial improvement over the two baselines. Tambur and

12We omit the 90th percentile since over 10% of frames are not rendered.
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Figure 14: Tambur has a higher median duration of freezes
than Block-Within but a significantly smaller cumulative du-
ration of freezes because Tambur has 78% fewer freezes than
Block-Within (Fig. 1). Tambur has a lower cumulative and
median duration of freezes than Block-Multi.

Tambur-0.9 progressively trade off improvements in loss re-
covery with bandwidth overhead. Overall, the results illustrate
a Pareto frontier of the benefits of streaming codes across the
QoE metrics that could be studied further in future work.

6 Related work

FEC for videoconferencing. From the early days of VoIP
and Internet-based audio and videoconferencing, FEC has
played a key role in recovering lost packets (e.g., [50]). As
standards for real-time media and conferencing developed,
RTP payload formats for various FEC schemes were defined
(e.g., [62]). Later, the FECFRAME working group of the
IETF [58] documented traditional FEC schemes such as parity
codes [9] and RS codes [57], as well as LDPC [56] and Raptor
codes [65]. As the WebRTC project developed based on these
standards, it also incorporated the use of FEC to protect media
streams [32, 64]. All these codes are block codes. As such,
RS codes (i.e., the main baselines against which Tambur was
evaluated) have the best loss recovery capabilities of any of
them, including fountain [40] and raptor codes [63]. FEC has
also been used for rate adaptation. For example, a proposed
rate adaptation algorithm for WebRTC, known as FBRA [45],
uses extra FEC packets to probe for additional bandwidth,
with the benefit that some of the packet losses due to self-
induced congestion can be recovered by the FEC.

Streaming codes. In addition to the prior work discussed in
§2 and §4, streaming codes have also been studied under vari-
ous other theoretical models, such as multiplexing with two
different decoding delays [4] and multiple burst losses [38].
However, these settings are not directly relevant to our focus
on videoconferencing applications.

Alternatives to FEC. Prior work has explored avoiding lossy
paths using overlay networks (e.g., Via [34] and J-QoS [31]).
While these can be effective in some circumstances, there are
two drawbacks to relying only on such approaches. Firstly,
these assume that a suitable alternative path exists (i.e., that
the lossy portion of the path is on a transit network that can

be avoided, rather than on the user’s home network or last-
mile to the ISP, and that there is available interconnectivity
with the provider’s overlay network); in the current era of
hybrid work, enterprises cannot completely eliminate loss
through traditional QoS approaches. Secondly, when overlay
networks are a feasible solution, there needs to be a careful
analysis of when to apply this approach since there is a high
financial cost to relaying traffic and fixed capacity on provider
networks. Another alternative to FEC is using retransmission
to recover losses (e.g., [30]), provided the end-to-end latency
is tolerable. However, when there is both high latency and
loss (e.g., in cases of acute congestion), retransmission is not
always feasible [3]. Tambur provides a flexible end-to-end
solution within the application that adapts to any path and is
orthogonal to these other approaches.

7 Conclusion

This work introduces Tambur—a new communication scheme
for bandwidth-efficient loss recovery for videoconferencing
comprising two components. First, a new streaming code
that bridges the gap between theoretical streaming codes
and videoconferencing applications, which takes as input any
given bandwidth overhead. Second, a learning-based predic-
tive model to set the bandwidth overhead. Tambur simultane-
ously reduces the frequency of non-recoverable frames and
the bandwidth overhead by 26.5% and 35.1%, respectively,
in our evaluation over large-scale real-world traces from a
commercial videoconferencing application. We also design
the first videoconferencing framework for implementing and
evaluating FEC schemes. The framework enables easy eval-
uation of the QoE benefits of new communication schemes
by providing a simple interface to incorporate (a) new FEC
schemes and (b) new learning-based predictive models. Using
the framework, we evaluate Tambur and show improvements
in QoE metrics, including 26% fewer freezes and 28% fewer
non-rendered frames. The benefits establish streaming codes
as a viable solution to recovering lost packets for videoconfer-
encing applications. The results thus also show the promise
of streaming codes for other live-streaming applications such
as cloud gaming.
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Appendices

A Recovering a burst with Tambur’s stream-
ing code

Consider a burst of length b starting in frames i and delay
constraint τ. Suppose all frames before the burst have been
decoded. First, the received symbols of P[i], . . . ,P[i+b−1]
as well as P[i+ b], . . . ,P[i+ τ] are used to decode the lost
symbols of V [i], . . . ,V [i+ b− 1]. Second, each U [ j] for j ∈
{i, . . . , i+b} is decoded using P[ j+τ]. In both steps, decoding
follows from solving a system of linear equations.

B Tambur’s streaming code’s flow network

The graph of the flow network at a high level represents
each P[i] that may be used in decoding with a node with
an edge into nodes corresponding to each of U [i], U [i −
τ],V [i], . . . ,V [i − τ], where one unit of flow represents de-
coding one symbol. The flow network is small (i.e., at most
(5τ+3) vertices and (2τ2 +11τ+5) edges for τ = 3). There-
fore, the time to solve it is negligible compared to solving the
system of linear equations.

C Parameters of the GE channel

To set the parameters of the GE channel for the offline evalu-
ation, we first identify settings that match several aggregate
statistics of the production traces as follows. The probability
of transitioning from the bad state to the good state (respec-
tively, vice versa) is the mean over traces of one divided by the
mean length of bursts (respectively, guard spaces) in frames.
The probability of loss in the bad state equals the mean over
traces of the multi-frame burstiness. The probability of loss
in the good state is then set so that the expected loss rate
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Figure 15: The encoding and decoding times are modest.

matches the mean loss rate over traces given the other three
parameters. To ensure our results hold for varying network
conditions, we then draw the values for each of the four param-
eters uniformly at random from intervals around these values
(rounded to increments of 0.05) as follows. The probability
of transitioning from the good state to the bad state and vice
versa are distributed as Uniform(0, 0.05) and Uniform(.75,
.9), respectively. The probability of loss in the good and bad
states are distributed as Uniform(0, 0.05) and Uniform(0.05,
1), respectively.13

D Encoding and decoding overheads

We compare the encoding and decoding time for Tambur with
that of Block-Within, which is the fastest of all the baselines
(Fig. 15). As seen in Fig. 15, the time to encode and decode is
comparable to Block-Within and is only a small fraction of the
end-to-end latency budget of 150 ms. The median times for
encoding are 1.7ms and .6ms for Tambur and Block-Within,
respectively, whereas decoding takes 3.4ms and .7ms for Tam-
bur and Block-Within, respectively. Because Tambur operates
over multiple frames of varying sizes, encoding and decod-
ing times are slightly longer and more variable. Our imple-
mentation of Tambur requires a fixed amount of memory of
approximately 575 KB during encoding and decoding.

But times for encoding and decoding are just a small com-
ponent of the end-to-end latency. The 50ms one-way delay
and the number of extra frames used in decoding (see Fig. 16)
have more pronounced effects. Recall that each additional
frame used in adds approximately 33 ms to the end-to-end
latency, so using fewer extra frames is faster. Tambur does
not decode within the same frame only 1% more frequently
than Block-Within, which cannot use extra frames in decod-
ing. Tambur uses extra frames to decode only 8% of the time.
Block-Multi decodes 24%, 23%, 23%, and 23% of frames
with 0,1,2, and 3 extra frames, respectively. Each extra frame
adds ≈ 33 ms to the end-to-end latency.

13The results were similar when we varied the ranges.
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Figure 16: Tambur recovers nearly as many frames as Block-
Within using no extra frames and also recovers more over-
all. Block-Multi recovers an approximately equal number of
frames using 0, 1, 2, and 3 extra frames.

E Tail duration of freezes

Recall from Fig. 14b that Tambur, Tambur-0.9, and Tambur-
full-BW have higher tail durations of freezes than Block-
Multi. The reason for the poor performance is threefold. First,
Tambur, Tambur-0.9, and Tambur-full-BW fail to render more
frames at the tail, as was discussed in §5.2. Second, the sender
generates a keyframe (often ending a freeze) once it learns
of recovery failures. Because Block-Within can only recover
a frame using the parity packets within the same frame, a
keyframe is requested 3 frames sooner (i.e., ≈ 100 ms faster)
than when Tambur (or Tambur-0.9) is used. Many of the 78%
of freezes under the Block-Within where Tambur does not
freeze are therefore short and shift the entire distribution of
cumulative duration of freezes for Block-Within, including
the tail; if we added 0ms freezes for Tambur (or Tambur-0.9)
for these instances, their distributions would likewise shift.
Third, encoding across multiple frames can make it harder
to recover a keyframe triggered by a freeze of several lost
frames. This phenomenon does not impact Block-Within and
affects Block-Multi less than any of Tambur, Tambur-0.9,
and Tambur-full-BW (e.g., does not affect on Block-Multi
whenever the keyframe is in the first position within the block
of (τ+1) = 4 frames). The phenomenon also contributes to
a difference in the frequency of recovered frames (Fig. 12a)
and rendered frames (Fig. 13a). There is a natural solution
that is outside of the scope of this work. When the sender
triggers a new keyframe due to a loss, it should stop taking
linear combinations of frames from before the new keyframe.
Doing so will strictly (a) increase the frequency of displaying
frames and (b) decrease the mean and median duration of
freezes. It will benefit Tambur, Tambur-0.9, and Tambur-full-
BW the most, but it will also improve Block-Multi to a lesser
extent.

F Analysis of recovering bursts

Next, we evaluate Tambur’s capabilities for recovering bursts
of packets across multiple frames; to do so fairly, we must fix
the bandwidth overhead, so “Tambur” refers to Tambur-full-
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Figure 17: Given the same bandwidth budget as Block-Within,
Tambur is more likely to recover all or zero frames from a
burst loss over production traces.
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Figure 18: Given the same bandwidth budget as Block-
Within/Block-Multi, Tambur provides greater improvement
for longer bursts over an emulated network.

BW for the remainder of §F. Fig. 17 shows the distribution
of the number of packets recovered for each burst length (in
frames) for the offline evaluation. In Fig. 17, the distribution
of the number of packets recovered for each burst length (in
frames) is shown. Bursts encompassing 2, 3, and 4 frames
constitute 23%, 7%, and 3.3% of all lossy events, respectively.
For these losses, Tambur recovers all lossy frames 66.8%,
103%, and 97.3% more frequently than Block-Within. For
the longer (less frequent) bursts of lengths 3 and 4, when the
bandwidth overhead is insufficient, Tambur fails to recover
any frames 65.9% and 87% more frequently than the Block-
Within. This follows from the Block-Within being more likely
to recover some (but not all) of the frames when there is insuf-
ficient bandwidth overhead to recover all losses. In contrast,
when the bandwidth overhead is insufficient to recover a burst
in its entirety, streaming codes are likely to fail to recover all
of the frames. However, note that the overall performance of
Tambur is still better than the Block-Within: Tambur recovers
21.8%, 12.4%, and 2.3% more frames than the Block-Within
for bursts of 2,3, and 4 frames, respectively. Tambur also out-
performs Block-Within in recovering losses limited to a single
frame, as parity packets sent with later frames can be used in
recovery. In short, Tambur performs significantly better for
bursts across up to 3 frames than Block-Within and offers
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more modest gains for bursts across 4 frames.
We also evaluate Tambur’s effectiveness at recovering

bursts in the online evaluation. Because the loss of a sin-
gle packet of a frame means that the frame is “lost” under our
definition of a burst, longer bursts usually only involve being
in the bad state for one, two, or sometimes three frames. We
consider the mean number of frames recovered among a burst
encompassing 1, 2, 3, 4, or greater than 4 frames in Fig. 18.
Tambur reduces the frequency of non-recoverable frames by
70.5%, 68.0%, and 65.8% compared to Block-Within over
bursts of 2, 3, and 4 frames respectively. Tambur reduces the
frequency of non-recoverable frames by 35.8%, 40.3%, and
47.4% compared to Block-Multi over bursts of 2, 3, and 4,
respectively.
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