
Pantheon: the training ground for Internet congestion-control research

Francis Y. Yan†, Jestin Ma†, Greg D. Hill†, Deepti Raghavan¶, Riad S. Wahby†,
Philip Levis†, Keith Winstein†

†Stanford University, ¶Massachusetts Institute of Technology

Abstract

Internet transport algorithms are foundational to the per-
formance of network applications. But a number of prac-
tical challenges make it difficult to evaluate new ideas
and algorithms in a reproducible manner. We present
the Pantheon, a system that addresses this by serving
as a community “training ground” for research on In-
ternet transport protocols and congestion control (https:
//pantheon.stanford.edu). It allows network researchers to
benefit from and contribute to a common set of benchmark
algorithms, a shared evaluation platform, and a public
archive of results.

We present three results showing the Pantheon’s value
as a research tool. First, we describe a measurement study
from more than a year of data, indicating that congestion-
control schemes vary dramatically in their relative per-
formance as a function of path dynamics. Second, the
Pantheon generates calibrated network emulators that cap-
ture the diverse performance of real Internet paths. These
enable reproducible and rapid experiments that closely
approximate real-world results. Finally, we describe the
Pantheon’s contribution to developing new congestion-
control schemes, two of which were published at USENIX
NSDI 2018, as well as data-driven neural-network-based
congestion-control schemes that can be trained to achieve
good performance over the real Internet.

1 Introduction

Despite thirty years of research, Internet congestion con-
trol and the development of transport-layer protocols re-
main cornerstone problems in computer networking. Con-
gestion control was originally motivated by the desire to
avoid catastrophic network collapses [22], but today it is
responsible for much more: allocating capacity among
contending applications, minimizing delay and variabil-
ity, and optimizing high-level metrics such as video re-
buffering, Web page load time, the completion of batch

jobs in a datacenter, or users’ decisions to engage with a
website.

In the past, the prevailing transport protocols and
congestion-control schemes were developed by re-
searchers [18, 22] and tested in academic networks or
other small testbeds before broader deployment across
the Internet. Today, however, the Internet is more diverse,
and studies on academic networks are less likely to gener-
alize to, e.g., CDN nodes streaming video at 80 Gbps [26],
smartphones on overloaded mobile networks [8], or secu-
rity cameras connected to home Wi-Fi networks.

As a result, operators of large-scale systems have be-
gun to develop new transport algorithms in-house. Op-
erators can deploy experimental algorithms on a small
subset of their live traffic (still serving millions of users),
incrementally improving performance and broadening de-
ployment as it surpasses existing protocols on their live
traffic [1, 7, 24]. These results, however, are rarely repro-
ducible outside the operators of large services.

Outside of such operators, research is usually con-
ducted on a much smaller scale, still may not be repro-
ducible, and faces its own challenges. Researchers often
create a new testbed each time—interesting or represen-
tative network paths to be experimented over—and must
fight “bit rot” to acquire, compile, and execute prior al-
gorithms in the literature so they can be fairly compared
against. Even so, results may not generalize to the wider
Internet. Examples of this pattern in the academic litera-
ture include Sprout [42], Verus [43], and PCC [12].

This paper describes the Pantheon: a distributed, col-
laborative system for researching and evaluating end-to-
end networked systems, especially congestion-control
schemes, transport protocols, and network emulators. The
Pantheon has four parts:

1. a software library containing a growing collection
of transport protocols and congestion-control al-
gorithms, each verified to compile and run by a
continuous-integration system, and each exposing
the same interface to start or stop a full-throttle flow,
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2. a diverse testbed of network nodes on wireless and
wired networks around the world, including cellular
networks in Stanford (U.S.), Guadalajara (Mexico),
São Paulo (Brazil), Bogotá (Colombia), New Delhi
(India), and Beijing (China), and wired networks in
all of the above locations as well as London (U.K.),
Iowa (U.S.), Tokyo (Japan), and Sydney (Australia),

3. a collection of network emulators, each calibrated
to match the performance of a real network path be-
tween two nodes, or to capture some form of patho-
logical network behavior, and

4. a continuous-testing system that regularly evaluates
the Pantheon protocols over the real Internet between
pairs of testbed nodes, across partly-wireless and all-
wired network paths, and over each of the network
emulators, in single- and multi-flow scenarios, and
publicly archives the resulting packet traces and anal-
yses at https://pantheon.stanford.edu.

The Pantheon’s calibrated network emulators address
a tension that protocol designers face between experi-
mental realism and reproducibility. Simulators and emu-
lators are reproducible and allow rapid experimentation,
but may fail to capture important dynamics of real net-
works [15, 16, 31]. To resolve this tension, the Pantheon
generates network emulators calibrated to match real Inter-
net paths, graded by a novel figure of merit: their accuracy
in matching the performance of a set of transport algo-
rithms. Rather than focus on the presence or absence of
modeled phenomena (jitter, packet loss, reordering), this
metric describes how well the end-to-end performance
(e.g., throughput, delay, and loss rate) of a set of algo-
rithms, run over the emulated network, matches the corre-
sponding performance statistics of the same algorithms
run over a real network path.

Motivated by the success of ImageNet [11, 17] in the
computer-vision community, we believe a common refer-
ence set of runnable benchmarks, continuous experimenta-
tion and improvement, and a public archive of results will
enable faster innovation and more effective, reproducible
research. Early adoption by independent research groups
provides encouraging evidence that this is succeeding.

Summary of results:
• Examining more than a year of measurements from

the Pantheon, we find that transport performance is
highly variable across the type of network path, bot-
tleneck network, and time. There is no single existing
protocol that performs well in all settings. Further-
more, many protocols perform differently from how
their creators intended and documented (§4).

• We find that a small number of network-emulator pa-
rameters (bottleneck link rate, isochronous or mem-
oryless packet inter-arrival timing, bottleneck buffer

size, stochastic per-packet loss rate, and propagation
delay) is sufficient to replicate the performance of
a diverse library of transport protocols (with each
protocol matching its real-world throughput and de-
lay to within 17% on average), in the presence of
both natural and synthetic cross traffic. These results
go against some strains of thought in computer net-
working, which have focused on building detailed
network emulators (with mechanisms to model jitter,
reordering, the arrival and departure of cross traffic,
MAC dynamics, etc.), while leaving the questions
open of how to configure an emulator to accurately
model real networks and how to quantify the emula-
tor’s overall fidelity to a target (§5).

• We discuss three new approaches to congestion con-
trol that are using the Pantheon as a shared evaluation
testbed, giving us encouragement that it will prove
useful as a community resource. Two are from re-
search groups distinct from the present authors, and
were published at USENIX NSDI 2018: Copa [2]
and Vivace [13]. We also describe our own data-
driven designs for congestion control, based on neu-
ral networks that can be trained on a collection of
the Pantheon’s emulators and in turn achieve good
performance over real Internet paths (§6).

2 Related work

Pantheon benefits from a decades-long body of related
work in Internet measurement, network emulation, trans-
port protocols, and congestion-control schemes.

Tools for Internet measurement. Systems like Planet-
Lab [10], Emulab [40], and ORBIT [30] provide measure-
ment nodes for researchers to test transport protocols and
other end-to-end applications. PlanetLab, which was in
wide use from 2004–2012, at its peak included hundreds
of nodes, largely on well-provisioned (wired) academic
networks around the world. Emulab allows researchers to
run experiments over configurable network emulators and
on Wi-Fi links within an office building.

While these systems are focused on allowing re-
searchers to borrow nodes and run their own tests, the
Pantheon operates at a higher level of abstraction. Pan-
theon includes a single community software package that
researchers can contribute algorithms to. Anybody can
run any of the algorithms in this package, including over
Emulab or any network path, but Pantheon also hosts a
common repository of test results (including raw packet
traces) of scripted comparative tests.

Network emulation. Congestion-control research has
long used network simulators, e.g., ns-2 [28], as well
as real-time emulators such as Dummynet [6, 33],
NetEm [20], Mininet [19], and Mahimahi [27].
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These emulators provide increasing numbers of pa-
rameters and mechanisms to recreate different network
behaviors, such as traffic shapers, policers, queue disci-
plines, stochastic i.i.d. or autocorrelated loss, reordering,
bit errors, and MAC dynamics. However, properly setting
these parameters to emulate a particular target network
remains an open problem.

One line of work has focused on improving emulator
precision in terms of the level of detail and fidelity at
modeling small-scale effects (e.g., “Two aspects influence
the accuracy of an emulator: how detailed is the model of
the system, and how closely the hardware and software
can reproduce the timing computed by the model” [6]).
Pantheon takes a different approach, instead focusing on
accuracy in terms of how well an emulator recreates the
performance of a set of transport algorithms.

Congestion control. Internet congestion control has a
deep literature. The original DECBit [32] and Tahoe [22]
algorithms responded to one-bit feedback from the net-
work, increasing and decreasing a congestion window in
response to acknowledgments and losses. More recently,
researchers have tried to formalize the protocol-design
process by generating a congestion-control scheme as a
function of an objective function and prior beliefs about
the network and workload. Remy [37, 41] and PCC [12]
are different kinds of “learned” schemes [35]. Remy uses
an offline optimizer that generates a decision tree to opti-
mize a global utility score based on network simulations.
PCC uses an online optimizer that adapts its sending rate
to maximize a local utility score in response to packet
losses and RTT samples. In our current work (§ 6), we
ask whether it is possible to quickly train an algorithm
from first principles to produce good global performance
on real Internet paths.

3 Design and implementation

This section describes the design and implementation of
the Pantheon, a system that automatically measures the
performance of many transport protocols and congestion-
control schemes across a diverse set of network paths. By
allowing the community to repeatably evaluate transport
algorithms in scripted comparative tests across real-world
network paths, posted to a public archive of results, the
Pantheon aims to help researchers develop and test algo-
rithms more rapidly and reproducibly.

Below, we demonstrate several uses for Pantheon: com-
paring existing congestion-control schemes on real-world
networks (§4); calibrating network emulators that accu-
rately reproduce real-world performance (§5); and design-
ing and testing new congestion-control schemes (§6).

Label Scheme LoC
Copa Copa [2] 46
LEDBAT LEDBAT/µTP [36] (libutp) 48
PCC PCC† [12] 46
QUIC QUIC Cubic [24] (proto-quic) 119
SCReAM SCReAM [23] 541
Sprout Sprout† [42] 46
Tao RemyCC “100x” (2014) [37] 43
BBR TCP BBR [7] 52
Cubic TCP Cubic [18] (Linux default) 30
Vegas TCP Vegas [5] 50
Verus Verus† [43] 43
— Vivace [13] 37
WebRTC WebRTC media [4] in Chromium 283
— FillP (work in progress) 41
Indigo LSTM neural network (work in progress) 35

Figure 1: The Pantheon’s transport schemes (§3.1.1) and
the labels used for them in figures in this paper. Shown
are the number of lines of Python, C++, or Javascript code
in each wrapper that implements the common abstraction.
Schemes marked † are modified to reduce MTU.

3.1 Design overview
Pantheon has three components: (1) a software repository
containing pointers to transport-protocol implementations,
each wrapped to expose a common testing interface based
on the abstraction of a full-throttle flow; (2) testing infras-
tructure that runs transport protocols in scripted scenarios,
instruments the network to log when each packet was sent
and received, and allows flows to be initiated by nodes be-
hind a network address translator (NAT); and (3) a global
observatory of network nodes, enabling measurements
across a wide variety of paths. We describe each in turn.

3.1.1 A collection of transport algorithms, each ex-
posing the same interface

To test each transport protocol or congestion-control
scheme on equal footing, Pantheon requires it to expose a
common abstraction for testing: a full-throttle flow that
runs until a sender process is killed. The simplicity of this
interface has allowed us (and a few external contributors
so far) to write simple wrappers for a variety of schemes
and contribute them to the Pantheon, but limits the kinds
of evaluations the system can do.1

Figure 1 lists the currently supported schemes, plus
the size (in lines of code) of a wrapper script to expose
the required abstraction. For all but three schemes, no
modification was required to the existing implementation.
The remaining three had a hard-coded MTU size and

1For example, the interface allows measurements of combinations
of long-running flows (with timed events to start and stop a flow), but
does not allow the caller to run a scheme until it has transferred exactly
x bytes. This means that the Pantheon cannot reliably measure the flow-
completion time of a mix of small file transfers.
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required a small patch to adjust it for compatibility with
our network instrumentation; please see §3.1.2 below.

As an example, we describe the Pantheon’s wrapper
to make WebRTC expose the interface of a full-throttle
flow. The Pantheon tests the Chromium implementation
of WebRTC media transfer [4] to retrieve and play a video
file. The wrapper starts a Chromium process for the sender
and receiver, inside a virtual X frame buffer, and provides
a signaling server to mediate the initial connection. This
comprises about 200 lines of JavaScript.

Pantheon is designed to be easily extended; researchers
can add a new scheme by submitting a pull request that
adds a submodule reference to their implementation and
the necessary wrapper script. Pantheon uses a continuous-
integration system to verify that each proposed scheme
builds and runs in emulation.

3.1.2 Instrumenting network paths

For each IP datagram sent by the scheme, Pantheon’s
instrumentation tracks the size, time sent, and (if applica-
ble) time received. Pantheon allows either side (sender or
receiver) to initiate the connection, even if one of them
is behind a NAT, and prevents schemes from communi-
cating with nodes other than the sender and receiver. To
achieve this, Pantheon creates a virtual private network
(VPN) between the endpoints, called a Pantheon-tunnel,
and runs all traffic over this VPN.

Pantheon-tunnel comprises software controlling a vir-
tual network device (TUN) [39] at each endpoint. The
software captures all IP datagrams sent to the local TUN,
assigns each a unique identifier (UID), and logs the UID
and a timestamp. It then encapsulates the packet and its
UID in a UDP datagram, which it transmits to the other
endpoint via the path under test. The receiving endpoint
decapsulates, records the UID and arrival time, and deliv-
ers the packet to its own Pantheon-tunnel TUN device.

This arrangement has two main advantages. First, UIDs
make it possible to unambiguously log information about
every packet (e.g., even if packets are retransmitted or
contain identical payloads). Second, either network end-
point can be the sender or receiver of an instrumented
network flow over an established Pantheon-tunnel, even if
it is behind a NAT (as long as one endpoint has a routable
IP address to establish the tunnel).

Pantheon-tunnel also has disadvantages. First, encapsu-
lation costs 36 bytes (for the UID and headers), reducing
the MTU of the virtual interface compared to the path
under test; for schemes that assume a fixed MTU, Pan-
theon patches the scheme accordingly. Second, because
each endpoint records a timestamp to measure the send
and receive time of each datagram, accurate timing re-
quires the endpoints’ clocks to be synchronized; endpoints
use NTP [29] for this purpose. Finally, Pantheon-tunnel

makes all traffic appear to the network as UDP, meaning
it cannot measure the effect of a network’s discrimination
based on the IP protocol type.2

Evaluation of Pantheon-tunnel. To verify that Pantheon-
tunnel does not substantially alter the performance of
transport protocols, we ran a calibration experiment to
measure the tunnel’s effect on the performance of three
TCP schemes (Cubic, Vegas, and BBR). We ran each
scheme 50 times inside and outside the tunnel for 30 sec-
onds each time, between a colocation facility in India and
the EC2 India datacenter, measuring the mean through-
put and 95th-percentile per-packet one-way delay of each
run.3 We ran a two-sample Kolmogorov-Smirnov test for
each pair of statistics (the 50 runs inside vs. outside the
tunnel for each scheme’s throughput and delay). No test
found a statistically significant difference below p < 0.2.

3.1.3 A testbed of nodes on interesting networks

We deployed observation nodes in countries around the
world, including cellular (LTE/UMTS) networks in Stan-
ford (USA), Guadalajara (Mexico), São Paulo (Brazil),
Bogotá (Colombia), New Delhi (India), and Beijing
(China), wired networks in all of the above locations as
well as London (U.K.), Iowa (U.S.), Tokyo (Japan), and
Sydney (Australia), and a Wi-Fi mesh network in Nepal.
These nodes were provided by a commercial colocation
facility (Mexico, Brazil, Colombia, India), by volunteers
(China and Nepal), or by Google Compute Engine (U.K.,
U.S., Tokyo, Sydney).

We found that hiring a commercial colocation operator
to maintain LTE service in far-flung locations has been an
economical and practical approach; the company main-
tains, debugs, and “tops up” local cellular service in each
location in a way that would otherwise be impractical
for a university research group. However, this approach
limits us to available colocation sites and ones where we
receive volunteered nodes. We are currently bringing up
a volunteered node with cellular connectivity in Saudi
Arabia and welcome further contributions.

3.2 Operation and testing methods
The Pantheon frequently benchmarks its stable of
congestion-control schemes over each path to create an
archive of real-world network observations. On each
path, Pantheon runs multiple benchmarks per week. Each
benchmark follows a software-defined scripted workload
(e.g., a single flow for 30 seconds; or multiple flows of

2Large-scale measurements by Google [24] have found such discrim-
ination, after deployment of the QUIC UDP protocol, to be rare.

3For BBR running outside the tunnel, we were only able to measure
the average throughput (not delay). Run natively, BBR’s performance
relies on TCP segmentation offloading [9], which prevents a precise
measurement of per-packet delay without the tunnel’s encapsulation.
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cross traffic, arriving and departing at staggered times),
and for each benchmark, Pantheon chooses a random or-
dering of congestion-control schemes, then tests each
scheme in round-robin fashion, repeating until every
scheme has been tested 10 times (or 3 for partly-cellular
paths). This approach mirrors the evaluation methods of
prior academic work ([12, 42, 43]).

During an experiment, both sides of a path repeat-
edly measure their clock offset to a common NTP server
and use these to calculate a corrected one-way delay
of each packet. After running an experiment, a node
calculates summary statistics (e.g., mean throughput,
loss rate, and 95th-percentile one-way delay for each
scheme) and uploads its logs (packet traces, analyses,
and plots) to AWS S3 and the Pantheon website (https:
//pantheon.stanford.edu).

4 Findings

The Pantheon has collected and published measurements
of a dozen protocols taken over the course of more than
a year. In this section, we give a high-level overview of
some key findings in this data, focusing on the implica-
tions for research and experimental methodology. We ex-
amine comparative performance between protocols rather
than the detailed behavior of particular protocols, because
comparative analyses provide insight into which protocol
end hosts should run in a particular setting.

To ground our findings in examples from concrete data,
we select one particular path: AWS Brazil to Colom-
bia. This path represents the performance a device in
Colombia would see downloading data from properly
geo-replicated applications running in AWS (Brazil is the
closest site).

Finding 1: Which protocol performs best varies by
path. Figure 2a shows the throughput and delay of 12
transport protocols from AWS Brazil to a server in Colom-
bia, with an LTE modem from a local carrier (Claro).4 Fig-
ure 2b shows the throughput and delay for the same proto-
cols from a node at Stanford University with a T-Mobile
LTE modem, to a node in AWS California. The observed
performance varies significantly. In Brazil-Colombia,
PCC is within 80% of the best observed throughput
(QUIC) but with delay 20 times higher than the lowest
(SCReAM). In contrast, for Stanford-California, PCC has
only 52% of the best observed throughput (Cubic) and
the lowest delay. The Sprout scheme, developed by one
of the present authors, was designed for cellular networks
in the U.S. and performs well in that setting (Figure 2b),
but poorly on other paths.

4All results in this paper and supporting raw data can be found in the
Pantheon archive; e.g. the experiment indicated as P123 can be found
at https://pantheon.stanford.edu/result/123/.

These differences are not only due to long haul paths
or geographic distance. Figure 2c shows the performance
of the transport protocols from AWS Brazil to a wired
device in Colombia. Performance is completely different.
Delays, rather than varying by orders of magnitude, differ
by at most 32%. At the same time, some protocols are
strictly better: QUIC (Cubic) and (TCP) Cubic have both
higher throughput and lower delay than BBR and Verus.

Differences are not limited to paths with cellular links.
Figure 2e shows performance between Stanford and AWS
California using high-bandwidth wired links and Figure 2f
shows performance between the Google Tokyo and Syd-
ney datacenters. While in both cases PCC shows high
throughput and delay, in the AWS case BBR is better in
throughput while between Google data centers it provides
34% less throughput. Furthermore, LEDBAT performs
reasonably well on AWS, but has extremely low through-
put between Google datacenters.

This suggests that evaluating performance on a small
selection (or, in the worst case, just one) of paths can
lead to misleadingly positive results, because they are not
generalizable to a wide range of paths.
Finding 2: Which protocol performs best varies by
path direction. Figure 2d shows the performance of the
opposite direction of the path, from the same device with
cellular connection in Colombia to AWS Brazil. This
configuration captures the observed performance of up-
loading a photo or streaming video through a relay.

In the Brazil to Colombia direction, QUIC strictly dom-
inates Vegas, providing both higher throughput and lower
delay. In the opposite direction, however, the tradeoff is
less clear: Vegas provides slightly lower throughput with
a significant (factor of 9) decrease in delay. Similarly,
in the Brazil to Colombia direction, WebRTC provides
about half the throughput of LEDBAT while also halving
delay; in the Colombia to Brazil direction, WebRTC is
strictly worse, providing one third the throughput while
quadrupling delay.

This indicates that evaluations of network transport
protocols need to explicitly measure both directions of
a path. On the plus side, a single path can provide two
different sets of conditions when considering whether
results generalize.
Finding 3: Protocol performance varies in time and
only slightly based on competing flows. Figure 2g
shows the Brazil-Colombia path measured twice, sep-
arated by two days (the first measurement shown in open
dots is the same as in Figure 2a). Most protocols see
a strict degradation of performance in the second mea-
surement, exhibiting lower throughput and higher delay.
Cubic and PCC, once clearly distinguishable, merge to
have equivalent performance. More interestingly, the per-
formance of Vegas has 23% lower throughput, but cuts
delay by more than a factor of 2.
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(a) AWS Brazil to Colombia (cellular), 1 flow, 3 trials. P1392.
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(b) Stanford to AWS California (cellular), 1 flow, 3 trials. P950.
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(c) AWS Brazil to Colombia (wired), 1 flow, 10 trials. P1271.
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(d) Colombia to AWS Brazil (cellular), 1 flow, 3 trials. P1391.
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(e) Stanford to AWS California (wired), 3 flows, 10 trials. P1238.

Be
tte
r

(f) GCE Tokyo to GCE Sydney (wired), 3 flows, 10 trials. P1442.

Be
tte
r

(g) AWS Brazil to Colombia (cellular), 1 flow, 3 trials.

2 days after Figure 2a (shown in open dots). P1473.
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r

(h) AWS Brazil to Colombia (cellular), 3 flows, 3 trials. P1405.

Figure 2: Compared with Figure 2a, scheme performance varies across the type of network path (Figure 2c), number of
flows (Figure 2h), time (Figure 2g), data flow direction (Figure 2d), and location (Figure 2b). Figure 2e and 2f show that
the variation is not limited to just cellular paths. The shaded ellipse around a scheme’s dot represents the 1-σ variation
across runs. Given a measurement ID, e.g. P123, the full result can be found at https://pantheon.stanford.edu/result/123/.
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Finally, Figure 2h shows performance on the Brazil-
Colombia path when 3 flows compete. Unlike in Figure 2a,
PCC and Cubic dominate Vegas, and many protocols
see similar throughput but at greatly increased latency
(perhaps due to larger queue occupancy along the path).

This indicates that evaluations of network transport
protocols need to not only measure a variety of paths, but
also spread those measurements out in time. Furthermore,
if one protocol is measured again, all of them need to be
measured again for a fair comparison, as conditions may
have changed. Cross traffic (competing flows) is an im-
portant consideration, but empirically has only a modest
effect on relative performance. We do find that schemes
that diverge significantly from traditional congestion con-
trol (e.g., PCC) exhibit poor fairness in some settings; in
a set of experiments between Tokyo and Sydney (P1442),
we observed the throughput ratios of three PCC flows
to be 32:4:1. This seems to contradict fairness findings
in the PCC paper and emphasizes the need for a shared
evaluation platform across diverse paths.

5 Calibrated emulators

The results in Section 4 show that transport performance
varies significantly over many characteristics, including
time. This produces a challenge for protocol development
and the ability of researchers to reproduce each others’
results. One time-honored way to achieve controlled, re-
producible results, at the cost of some realism, is to mea-
sure protocols in simulation or emulation [14] instead
of the wild Internet, using tools like Dummynet [6, 33],
NetEm [20], Mininet [19], or Mahimahi [27].

These tools each provide a number of parameters and
mechanisms to recreate different network behaviors, and
there is a traditional view in computer networking that
the more fine-grained and detailed an emulator, the better.
The choice of parameter values to faithfully emulate a
particular target network remains an open problem.

In this paper, we propose a new figure of merit for
network emulators: the degree to which an emulator can
be substituted for the real network path in a full system,
including the endpoint algorithm, without altering the
system’s overall performance. In particular, we define
the emulator’s accuracy as the average difference of the
throughput and of the delay of a set of transport algo-
rithms run over the emulator, compared with the same
statistics from the real network path that is the emulator’s
target. The broader and more diverse the set of transport
algorithms, the better characterized the emulator’s accu-
racy will be: each new algorithm serves as a novel probe
that could put the network into an edge case or unusual
state that exercises the emulator and finds a mismatch.

In contrast to some conventional wisdom, we do not
think that more-detailed network models are necessarily

preferable. Our view is that this is an empirical ques-
tion, and that more highly-parameterized network models
create a risk of overfitting—but may be justified if lower-
parameter models cannot achieve sufficient accuracy.

5.1 Emulator characteristics
We found that a five-parameter network model is suffi-
cient to produce emulators that approximate a diverse
variety of real paths, matching the throughput and delay
of a range of algorithms to within 17% on average. The
resulting calibrated emulators allow researchers to test ex-
perimental new schemes—thousands of parallel variants
if necessary—in emulated environments that stand a good
chance of predicting future real-world behavior.5

The five parameters are:
1. a bottleneck link rate,
2. a constant propagation delay,
3. a DropTail threshold for the sender’s queue,
4. a stochastic loss rate (per-packet, i.i.d.), and
5. a bit that selects whether the link runs isochronously

(all interarrival times equal), or with packet deliver-
ies governed by a memoryless Poisson point process,
characteristic of the observed behavior of some LTE
networks [42].

To build emulators using these parameters, the Pan-
theon uses Mahimahi container-based network emula-
tors [27]. In brief: Mahimahi gives the sender and receiver
each its own isolated Linux network namespace, or con-
tainer, on one host. An emulator is defined by a chain of
nested elements, each one modeling a specific network ef-
fect: e.g., an mm-loss container randomly drops packets
in the outgoing or incoming direction at a specified rate.

5.2 Automatically calibrating emulators
to match a network path

Given a set of results over a particular network path, Pan-
theon can generate an emulator that replicates the same
results in about two hours, using an automated parameter-
search process that we now describe.

To find an appropriate combination of emulator pa-
rameters, Pantheon searches the space using a non-linear
optimization process that aims to find the optimal value
for a vector x, which represents the <rate, propagation
delay, queue size, loss rate> for the emulator.6

The optimization derives a replication error for each
set of emulator parameters, f (x), which is defined as the

5In a leave-one-out cross-validation experiment, we confirmed that
emulators trained to match the performance of n−1 transport algorithms
accurately predicted the unseen scheme’s performance within about 20%
(results not shown).

6The optimization is run twice, to choose between a constant rate or
a Poisson delivery process.
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(a) Nepal to AWS India (wireless), 1 flow, 10 trials.
Mean replication error: 19.1%. P188.

Be
tte
r

(b) AWS California to Mexico (wired), 3 flows, 10 trials.
Mean replication error: 14.4%. P1237.

Figure 3: Examples of per-scheme calibrated emulator errors. The filled dots represent real results over each network
path; the open dots represent the corresponding result over the emulator that best replicates all of the results. Emulators
for all-wired paths give better fidelity than emulators for partly-wireless paths (§5.3).

Path Error (%)
Nepal to AWS India (Wi-Fi, 1 flow, P188) 19.1
AWS Brazil to Colombia (cellular, 1 flow, P339) 13.0
Mexico to AWS California (cellular, 1 flow, P196) 25.1
AWS Korea to China (wired, 1 flow, P361) 17.7
India to AWS India (wired, 1 flow, P251) 15.6
AWS California to Mexico (wired, 1 flow, P353) 12.7
AWS California to Mexico (wired, 3 flows, P1237) 14.4

Figure 4: Replication error of calibrated emulators on six
paths with a single flow, and one path with three flows of
staggered cross traffic.

Path Feature change Error (%)

China wired

link rate only 211.8
add delay 211.8→ 189.7
add buffer size 189.7→ 32.3
add stochastic loss 32.3→ 17.7

Colombia cellular constant→ Poisson 23.7→ 13.0

Figure 5: Each of the emulator’s five parameters is helpful
in reducing replication error. For the China wired path, we
started with a single parameter and added the other three
features one by one, in the order of their contribution. The
Colombia cellular path required jitter (Poisson deliveries)
to achieve good accuracy.

average of the percentage changes between the real and
emulated mean throughput, and the real and emulated
mean 95th-percentile delay, across each of the set of ref-
erence transport algorithms. To minimize f (x), nonlinear
optimization is necessary because neither the mathemat-
ical expression nor the derivative of f (x) is known. In
addition, for both emulated and real world network paths,

f (x) is non-deterministic and noisy.
The Pantheon uses Bayesian optimization [25], a stan-

dard method designed for optimizing the output of a noisy
function when observations are expensive to obtain and
derivatives are not available.7 The method starts with the
assumption that the objective function, f (x), is drawn
from a broad prior (Gaussian is a standard choice and the
one we use). Each sample (i.e., calculation of the emulator
replication error for a given set of emulator parameters
x) updates the posterior distribution for f (x). Bayesian
optimization uses an acquisition function to guide the
algorithm’s search of the input space to the next value x.
We use the Spearmint [38] Bayesian-optimization toolkit,
which uses “expected improvement” as its acquisition
function. This function aims to maximize the expected
improvement over the current best value [25].

5.3 Emulation results
We trained emulators that model six of Pantheon’s paths,
each for about 2 hours on 30 EC2 machines with 4 vCPUs
each. Figure 3 shows per-scheme calibration results for
two representative network paths, a wireless device in
Nepal and a wired device in Mexico. Filled dots repre-
sent the measured mean performance of the scheme on
the real network path, while the open dot represents the
performance on the corresponding calibrated emulator. A
closer dot means the emulator is better at replicating that
scheme’s performance.

We observe that the emulators roughly preserve the
relative order of the mean performance of the schemes on
each path. Figure 4 shows mean error in replicating the

7Each evaluation of f (x) involves running all of Pantheon’s
congestion-control schemes in a scripted 30-second scenario, three
times, across the emulated path. This is done in parallel, so each evalua-
tion of f (x) takes about 30 seconds of wall-clock time.
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throughput and delay performance of all of Pantheon’s
congestion-control schemes by a series of emulators. To
ensure each parameter is necessary, we measured the
benefits of adding delay, queue size, and loss information
to a base emulator that uses a constant rate, in replicating
the China wired device path. For the cellular device path
we measured the benefit of using a Poisson based link rate
rather than a constant rate. As shown in Figure 5, each
added parameter improves the emulator’s fidelity.

Pantheon includes several calibrated emulators, and reg-
ularly runs the transport algorithms in single- and multi-
flow scenarios over each of the emulators and publishes
the results in its public archive. Researchers are also able
to run the calibrated emulators locally.

In addition, Pantheon includes, and regularly evaluates
schemes over, a set of “pathological” emulators suggested
by colleagues at Google. These model extreme network
behaviors seen in the deployment of the BBR scheme:
very small buffer sizes, severe ACK aggregation, and
token-bucket policers.

Overall, our intention is that Pantheon will contain a
sufficient library of well-understood network emulators
so that researchers can make appreciable progress evalu-
ating schemes (perhaps thousands of variants at once) in
emulation—with some hope that there will be fewer sur-
prises when a scheme is evaluated over the real Internet.

6 Pantheon use cases

We envision Pantheon as a common evaluation platform
and an aid to the development of new transport protocols
and congestion-control schemes. In this section, we de-
scribe three different ways that Pantheon has been helpful.
Two are based on experiences that other research groups
have had using Pantheon to assist their efforts. The third
is an example of a radical, data-driven congestion-control
design based on neural networks learned directly from
Pantheon’s network emulators.

Case 1. Vivace: validating a new scheme in the real
world. Dong et al. [13] describe a new congestion-control
scheme called Vivace, the successor to PCC [12]. They
contributed three variants of the scheme to Pantheon in
order to evaluate and tune Vivace’s performance, by ex-
amining Pantheon’s packet traces and analyses of Vivace
in comparison with other schemes across an array of real-
world paths. This is consistent with Pantheon’s goal of
being a resource for the research community (§1).

Case 2. Copa: iterative design with measurements.
Arun and Balakrishnan [2] describe another new scheme,
Copa, which optimizes an objective function via conges-
tion window and sending rate adjustments. In contrast
to Vivace, which was deployed on Pantheon largely as a
completed design, Copa used Pantheon as an integral part

of the design process: the authors deployed a series of
six prototypes, using Pantheon’s measurements to inform
each iteration. This demonstrates another use of Pantheon,
automatically deploying and testing prototypes on the real
Internet, and gathering in vivo performance data.
Case 3. Indigo: extracting an algorithm from data. As
an extreme example of data-driven design, we present
Indigo, a machine-learned congestion-control scheme
whose design we extract from data gathered by Pantheon.

Using machine learning to train a congestion-control
scheme for the real world is challenging. The main reason
is that it is impractical to learn directly from the Internet:
machine-learning algorithms often require thousands of it-
erations and hours to weeks of training time, meaning that
paths evolve in time (§4) more quickly than the learning
algorithm can converge. Pantheon’s calibrated emulators
(§5) provide an alternative: they are reproducible, can
be instantiated many times in parallel, and are designed
to replicate the behavior of congestion-control schemes.
Thus, our high-level strategy is to train Indigo using emu-
lators, then evaluate it in the real world using Pantheon.

Indigo is one example of what we believe to be a novel
family of data-driven algorithms enabled by Pantheon.
Specifically, Pantheon facilitates realistic offline training
and testing by providing a communal benchmark, evolv-
ing dataset, and calibrated emulators to allow approxi-
mately realistic offline training and testing. Below, we
briefly describe Indigo’s design; we leave a more detailed
description to future work.

Overview of Indigo

At its core, Indigo does two things: it observes the net-
work state, and it adjusts its congestion window, i.e., the
allowable number of in-flight packets. Observations occur
each time an ACK is received, and their effect is to update
Indigo’s internal state, defined below. Indigo adjusts its
congestion window every 10 ms. The state vector is:
1. An exponentially-weighted moving average (EWMA)

of the queuing delay, measured as the difference be-
tween the current RTT and the minimum RTT observed
during the current connection.

2. An EWMA of the sending rate, defined as the number
of bytes sent since the last ACK’ed packet was sent,
divided by the RTT.

3. An EWMA of the receiving rate, defined as the number
of bytes received since the ACK preceding the trans-
mission of the most recently ACK’ed packet, divided
by the corresponding duration (similar to and inspired
by TCP BBR’s delivery rate [7]).

4. The current congestion window size.
5. The previous action taken.

Indigo stores the mapping from states to actions in
a Long Short-Term Memory (LSTM) recurrent neural
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(a) Mexico to AWS California, 10 trials. P1272.
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(b) AWS Brazil to Colombia, 10 trials. P1439.

Figure 6: Real wired paths, single flow. Indigo’s performance is at the throughput/delay tradeoff frontier. Indigo without
calibrated emulators (“Indigo w/o calib”) gives worse performance.

Be
tte
r

(a) India to AWS India, 10 trials. P1476. (b) Time-domain three-flow test. One trial in Figure 7a.

Figure 7: Real wired paths, multiple flows. Figure 7a shows the performance of all congestion-control schemes on
multi-flow case. Figure 7b shows throughput vs. time for a three-flow run in Figure 7a starting 10 seconds apart. Indigo
shares the bandwidth fairly.

network [21] with 1 layer of 32 hidden units (values cho-
sen after extensive evaluation on the Pantheon). Indigo
requires a training phase (described below) in which,
roughly speaking, it learns a mapping from states to ac-
tions. Once trained and deployed, this mapping is fixed.

We note that there may be better parameter choices:
number of hidden units, action space, state contents, etc.
We have found that the above choices already achieve
good performance; further improvements are future work.
As one step toward validating our choices, we trained and
tested several versions of Indigo with a range of hidden
units, from 1 to 256, on an emulated network; choices
between 16 and 128 yielded good performance.

Indigo’s training phase. Indigo uses imitation learn-
ing [3, 34] to train its neural network. At a high level,
this happens in two steps: first, we generate one or more
congestion-control oracles, idealized algorithms that per-
fectly map states to correct actions, corresponding to links
on which Indigo is to be trained. Then we apply a stan-
dard imitation learning algorithm that use these oracles to

generate training data.
Of course, no oracle exists for real-world paths. Instead,

we generate oracles corresponding to emulated paths; this
is possible because Pantheon’s emulators (§5) have few
parameters. By the definition of an oracle, if we know the
ideal congestion window for a given link, we have the
oracle for the link: for any state, output whichever action
results in a congestion window closest to the ideal value.

A key insight is that for emulated links, we can very
closely approximate the ideal congestion window. For
simple links with a fixed bandwidth and minimum one-
way delay, the ideal window is given by the link’s
bandwidth-delay product (BDP) per flow. For calibrated
emulators (which have DropTail queues, losses, etc.), we
compute the BDP and then search near this value in emu-
lation to find the best fixed congestion window size.

After generating congestion-control oracles corre-
sponding to each training link, we use a state-of-the-art
imitation learning algorithm called DAgger [34] to train
the neural network. For each training link, DAgger trains
Indigo’s neural network as follows: first, it allows the
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neural network to make a sequence of congestion-control
decisions on the training link’s emulator, recording the
state vector that led to each decision. Next, it uses the
congestion-control oracle to label the correct action corre-
sponding to each recorded state vector. Finally, it updates
the neural network by using the resulting state-action map-
ping as training data. This process is repeated until further
training does not change the neural network.
Indigo’s performance. In this section, we compare In-
digo’s performance with that of other congestion-control
schemes, and we evaluate the effect of Pantheon’s cali-
brated emulators on performance, versus only training on
fixed-bandwidth, fixed-delay emulators.

We trained Indigo on 24 synthetic emulators uncorre-
lated to Pantheon’s real network paths, and on the cali-
brated emulators (§5). The synthetic emulators comprise
all combinations of (5, 10, 20, 50, 100, and 200 Mbps)
link rate and (10, 20, 40, 80 ms) minimum one-way delay,
with infinite buffers and no loss.
Indigo on Pantheon. We find that Indigo consistently
achieves good performance. Figure 6 compares Indigo to
other schemes in single flow on two wired paths. In both
cases, Indigo is at the throughput/delay tradeoff frontier.

Figure 7 shows Indigo’s performance in the multi-flow
case. Figure 7a shows the performance of all of Pan-
theon’s congestion-control schemes on a wired path from
India to AWS India; Indigo is once again on the through-
put/delay tradeoff frontier. Figure 7b is a time-domain
plot of one trial from Figure 7a, suggesting that Indigo
shares fairly, at least in some cases.
Benefit of calibrated emulators. Figures 6 and 7 also
depict a variant of Indigo, “Indigo w/o calib,” that is only
trained on the synthetic emulators, but not the calibrated
emulators. The version trained on calibrated emulators is
always as least as good or better.

7 Discussion, limitations, and future work

Improving Pantheon. Pantheon would be more useful if
it collected more data about congestion-control schemes.
For instance, Pantheon currently gathers data only from
a handful of nodes—vastly smaller than the evaluations
large-scale operators can perform on even a small fraction
of a billion-user population.

Moreover, geographic locality does not guarantee net-
work path similarity: two nodes in the same city can
have dramatically different network connections. Pan-
theon also only tests congestion-control schemes at full
throttle; other traffic patterns (e.g., Web-like workloads)
may provide researchers with valuable information (e.g.,
how their scheme affects page-load times).

Finally, Pantheon currently measures the interaction
between multiple flows of cross-traffic governed by the

same scheme, but we are working to make it measure
interactions between different schemes. These measure-
ments will help evaluate fairness in the real world.

Improving the calibrated emulators. Our current emu-
lators replicate throughput and delay metrics only within
17% accuracy on average. An open question is whether
we can improve emulator fidelity—especially on cellular
paths—without risk of overfitting. Considering metrics
other than 95th-percentile delay and mean throughput
may be one path forward. Adding more schemes to Pan-
theon could also help—or it might reveal that the current
set of emulator parameters, which we have empirically
determined, is insufficient for some schemes.

Indigo. We have presented a case study on Indigo, a data-
driven approach to congestion-control design that cru-
cially relies on Pantheon’s family of emulators. Indigo’s
trained model is complex and may have unknown failure
modes, but the results to date demonstrate how Pantheon
can enable new approaches to protocol design.

8 Conclusion

The Pantheon is a collection of transport protocols and
a distributed system of measurement points and network
emulators for evaluating and developing them. By measur-
ing many transport protocols and congestion-control al-
gorithms across a diverse set of paths, Pantheon provides
a training ground for studying and improving their perfor-
mance. Furthermore, by generating calibrated emulators
that match real-world paths, Pantheon enables researchers
to measure protocols reproducibly and accurately.

Pantheon has assisted in the development of two
recently-published congestion-control algorithms [2, 13],
and has supported our own data-driven approach to proto-
col design. In other areas of computer science, community
benchmarks and recurrent bakeoffs have fueled advances
and motivated researchers to build on each others’ work:
ImageNet in computer vision, the TPC family and Sort
Benchmarks for data processing, Kaggle competitions in
machine learning, etc. We are hopeful that Pantheon will,
over time, serve a similar role in computer networking.
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