
PRACTICAL MACHINE LEARNING FOR
SEQUENTIAL DECISION PROBLEMS ON THE INTERNET

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Francis Y. Yan
June 2020



http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/fv489np6870

© 2020 by Yu Yan. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii



I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Keith Winstein, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Philip Levis, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Emma Brunskill

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in 

electronic format. An original signed hard copy of the signature page is on file in

University Archives.

iii



Abstract

Networking algorithms often perform sequential decision making under uncertainty: They
observe a network path and decide, e.g., how many packets to send or what to put in them.
The Internet presents a particularly challenging setting: performance varies across several
orders of magnitude and changes with time, control is decentralized, each node observes
only a noisy sliver of the overall system, and accurate simulators do not exist.

Despite the recent progress in applying machine learning (ML) to networking research,
sequential decision problems on the Internet continue to rely on hand-designed algorithms.
Slow adoption of ML in these scenarios can be attributed to the requirement that control
algorithms be not just performant, but also practical: robust, generalizable, real-time, and
resource-efficient. Lack of research platforms for studying ML approaches in the real world
exacerbates the problem.

This dissertation presents the platforms and algorithms we developed to achieve practical
ML in the context of video streaming and congestion control. We describe Puffer, a
free, publicly accessible website that live-streams television channels and operates as a
randomized experiment of adaptive bitrate (ABR) algorithms. As of June 2020, Puffer
has attracted 120,000 real users and streamed 60 years of video across the Internet. Using
Puffer, we developed an ML-based ABR algorithm, Fugu, that robustly outperformed
existing schemes by learning in situ, on real data from its actual deployment environment.

Next, we describe Pantheon, a community “training ground” for Internet congestion-
control research. It allows network researchers to benefit from and contribute to a common
set of benchmark algorithms, a shared evaluation platform, and a public archive of results.
Pantheon has assisted four algorithms from other research groups in publishing at NSDI
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2018, ICML 2019, and SIGCOMM 2020. It also enabled our own ML-based congestion-
control algorithm, Indigo, which was trained to imitate expert congestion-control algorithms
we created in emulation and achieved good performance over the real Internet.
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Chapter 1

Introduction

Sequential decision making under uncertainty has long been a fundamental problem in
control theory, operations research, robotics, and artificial intelligence. It studies how an
intelligent agent interacts with a stochastic environment and makes a sequence of decisions.
The environment generally produces reward signals indicating the quality of decisions, and
the agent’s goal is to maximize the total reward received in the long run.

Networking algorithms running on the Internet often perform sequential decision making
under uncertainty as well. They repeatedly observe a network path and decide, e.g.,
how many packets to send or what to put in them. Adaptive bitrate (ABR) algorithms,
for example, observe the Internet and decide a video bitrate to transmit each time so as
to maximize the total quality of experience (QoE). Congestion-control schemes observe
congestion signals and decide the best congestion window size to use next.

A distinguishing feature and an inherent challenge of sequential decision problems is
that each decision of the agent may influence its later observations of the environment.
Therefore, maximizing the cumulative reward requires the agent to plan ahead and take into
account the long-term consequences of its decisions in an uncertain environment.

Moreover, the Internet—as a unique environment—presents many challenges: common
characteristics of the Internet (e.g., bandwidth and RTT) span several orders of magnitude
and change with time, individual nodes observe only a sliver of the overall system, behavior
is heavy-tailed and extremely noisy, and accurately simulating the Internet is beyond current
capabilities because of its complexity and diversity.
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Traditionally, control algorithms for real networks have been handcrafted, relying on
human experts’ knowledge and instincts during the design. This approach worked well
when the Internet was simple in the past but started to fall apart as the Internet grew much
larger and more complicated. For instance, these algorithms modeled the network in an
unrealistic way or had too many parameters to tune.

In recent years, machine learning (ML) approaches, especially those based on rein-
forcement learning, have made rapid advances in solving sequential decision problems.
While human experts are overwhelmed by the wild Internet and its massive volume of data,
ML excels at automatically extracting algorithms by interacting with an environment and
finding patterns in seas of data. It is a natural fit for this problem domain and has produced
promising results.

Even with the progress in applying ML to create networking algorithms, hand-designed
decision-makers still dominate the Internet. Taking video streaming and congestion control
as examples again: simple heuristic algorithms remain prevalent in ABR, and TCP Cubic
and BBR continue to prevail despite the proposal of many ML-based congestion-control
schemes. The adoption of ML in these scenarios is slow because real networked systems
require the control algorithms to be not only performant but also practical: performance
needs to generalize from training to the real world and be robust over the diverse Internet;
control algorithms must run in real time given a limited resource budget on the network
device; preferably, the training is also stable and sample efficient, and algorithm behavior
is interpretable.

Failing to satisfy practical requirements in the real world has become a significant hurdle
for researchers hoping to deploy learning-based algorithms. Regardless of the performance
in simulation or on small testbeds, a control algorithm needs to be validated on the real
Internet to prove its practicality. Sometimes the training of control algorithms may also
need a realistic environment, such as a real networked system, to learn from the experience
of interaction. However, existing real-world systems are often designed for production
purposes and are not intended for researchers to train or validate their algorithms. Lack of
research platforms has exacerbated the slow adoption of ML-based control algorithms on
the Internet.
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1.1 Background on sequential decision problems

In this section, we provide background on sequential decision problems, a class of problems
that commonly arise in networking research and many other research areas. We defer
specific background and related work in networking research to their respective chapters
(Chapter 2 for video streaming and Chapter 3 for congestion control).

1.1.1 Sequential decision making under uncertainty

Sequential decision making under uncertainty has a long and rich literature in control theory,
operations research, robotics, and artificial intelligence. It studies how a decision-maker, or
agent, achieves a goal by making a series of decisions in an uncertain world, or environment.

The agent, for example, can be an autonomous vehicle trying to reach a specific desti-
nation. Even if the vehicle is informed of a route, it will have to handle other real-world
situations—traffic lights and road signs, other traffic and pedestrians, obstacles on the road,
etc. The agent observes an environment state each time, such as a traffic light recognized
by its sensors, and takes an action, such as going straight or making a turn, speeding up or
slowing down. The next observation of the world may vary across different actions—the
vehicle will encounter a different situation after going straight compared with making a turn.
From the perspective of the agent, the environment changes in response to its decisions.
The fact that each action may influence the agent’s later observations of the environment is
a key feature of sequential decision problems.

In contrast to making a single decision or isolated decisions as in classification or
regression problems, sequential decision making is generally more challenging as it requires
the agent to take into account the longer-term consequences of each decision and to plan
ahead. An action that maximizes the cumulative return in the long run may not optimize
the immediate return, e.g., if an autonomous vehicle tries to arrive at a destination as soon
as possible, a small detour now might save more time by avoiding a later traffic jam.

A fundamental framework to formulate sequential decision making is the Markov de-
cision process (MDP) [12]. MDP assumes that each environment state is fully observable,
and environment models, namely state transitions, satisfy the Markov property and are
known to the agent. Under these assumptions, sequential decision making is also known as
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optimal control. The goal of MDP is to find a decision-maker that maximizes the long-term
expected return, or sum of rewards; each reward is received after transitioning from one
state to another by taking an action. A well-known and efficient solution to solving MDP is
dynamic programming [11].

By comparison, when the environment state is partially observable, meaning that the
agent’s observation of the world only partly captures the real underlying state, the MDP
framework is extended to Partially Observable MDP (POMDP) [108], which is often com-
putationally intractable to solve exactly. In other situations where the environment models
are unknown, the agent is required to learn through interaction how the stochastic environ-
ment changes over time and responds to each action. These sequential decision problems
with partially observable state or unknown models are the primary focus of reinforcement
learning (RL) [112], the third machine learning paradigm in addition to supervised learning
and unsupervised learning. Nevertheless, MDP remains an essential element of RL, and
generally speaking, optimal control and dynamic programming are considered part of RL.

This dissertation draws a closer connection to RL when designing control algorithms to
perform sequential decision making on the Internet. Next, we briefly introduce modern RL
that has made rapid advances in recent years.

1.1.2 Reinforcement learning

Modern RL dramatically benefits from deep learning and the massive increase in computing
power. An important early work of modern RL is learning to play Atari games at a
superhuman level [73]. Although its influence in the ML community lies more on its
demonstration of learning from a high-dimensional state space—directly from raw image
pixels, we focus here on a high-level takeaway: RL algorithms are often driven by rewards
and learned through trial-and-error. Given an image in an Atari game, the RL agent tries
out an action and receives a corresponding score in the game. The score serves as a reward
indicating the quality of the previous action(s). It then alters its neural network parameters
that encode the control algorithm, or policy, to favor “high-score” actions.
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Model-free RL. This trial-and-error paradigm forms the main body of modern RL, known
as model-free RL. Unless expressly stated otherwise, “RL” refers to “model-free RL” in this
dissertation. As its name suggests, model-free RL does not maintain a model of the envi-
ronment; it is solely reward-driven and learns an end-to-end mapping from states to actions.
Depending on whether it is representing a value function [11], an explicit policy, or both,
model-free RL roughly consists of three classes, based on value functions [11, 98, 122],
policy search [30, 113], and a hybrid—actor-critic—approach [59, 72], respectively. How-
ever, we are not concerned with the difference between various model-free RL approaches
in this dissertation. For example, Pensieve [70] adopts an actor-critic approach to learning
an ABR algorithm, and we simply refer to it as a typical, model-free RL algorithm.

Model-based RL. As opposed to model-free RL that learns from rewards and trial-and-
error, model-based RL [78] learns an environment model first. In other words, given a state
and an action, model-based RL learns to predict the next possible state and emitted reward
based on past observations, often via supervised learning. Then by simulating the environ-
ment model, a model-based RL agent can plan with classical optimal control techniques,
such as dynamic programming and model predictive control (MPC) [19]. Model-based RL
is more sample efficient (i.e., fewer samples are required during training) than model-free
methods [29] and plays an important role in today’s RL research. However, a drawback
of model-based RL is that modeling the environment introduces an extra layer of error,
although MPC somewhat mitigates the model error. Our ABR algorithm, Fugu (§2.3),
belongs exactly to the family of model-based RL.

Imitation learning. Another family of RL methods, imitation learning, studies the prob-
lem of extracting a policy from “expert demonstration,” i.e., a sequence of states and the
corresponding (optimal) actions output by an expert policy. The simplest form of imitation
learning is behavioral cloning [7, 89], which learns to map each state to the expert action
using supervised learning. It is proved sample efficient [49] but only feasible when the
expert demonstration is not expensive to obtain. Although imitation learning also includes
other methods such as inverse RL [83,99], which infers an unknown reward function of an
agent from its behavior, they are not the focus of this dissertation. Our congestion-control
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algorithm, Indigo (§3.7), uses a specific behavioral-cloning method called DAgger [97],
and we simply refer to it as an imitation-learning algorithm.

Challenges of real-world RL. RL has reached a superhuman level in video games [73],
chess [105], and many simulated environments [18, 66]. However, the employment of RL
in the real world lags behind RL research due to a variety of practical challenges [36]:

1. Real systems are often too complex to simulate accurately and do not have a model
to capture dynamics with accuracy. Therefore, previous success stories of RL, which
mostly rely on environments we can properly simulate, may not generalize to real
life if good simulators do not exist for these systems. This roadblock is known as
simulation-to-reality gap [16], describing the discrepancy between the simulated and
actual environments. Reducing the gap is a prerequisite for creating deployable RL
algorithms.

2. Acquiring data on real-world systems is often expensive and intrusive to the production
service, requiring RL to learn from limited training data. Access only to limited
samples calls for sample-efficient RL algorithms [78, 97].

3. Real systems often impose safety constraints on RL agents. The consequences of a
destructive action are limited in simulation but may destroy the systems in real life,
e.g., violating safety constraints may crash a self-driving car. The safety of learning
in an environment has drawn more attention recently [2, 27].

4. Real systems may exhibit noisier behavior and more severe partial observability.
Although recent work has proposed approaches to addressing these issues, e.g., by
incorporating state history [73] and devising policies robust to system noise [88, 95,
117], their effectiveness remains to be verified in the real world.

5. Real systems run in wall-clock time, rather than in simulation time, and often have
delays in providing feedback while executing a policy; parallel training as in simu-
lation may not be feasible anymore in the real world. Given these constraints, the
training still has to finish within a reasonable time, and each inference must also be
completed without missing the deadline for making the next control decision.
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6. Real systems have a limited computational budget and prefer resource-efficient algo-
rithms to reduce operational costs. E.g., the neural networks used in RL algorithms
might significantly reduce the total number of concurrently running applications,
so the performance gain must outweigh the computational overhead to provide an
incentive for adopting RL.

1.2 Thesis

This dissertation proposes that ML may improve sequential decision making on the Internet,
but should also be practical—robust, generalizable, real-time, and resource-efficient—to be
adopted in the real world. In addition, open research platforms providing a realistic setting
for training and validation may facilitate the development of practical ML algorithms.

Stated precisely, the thesis of this dissertation is: Machine learning improves sequential
decision making on the Internet and is practical. We demonstrate the thesis using real-world
platforms and algorithms we created for video streaming and congestion control.

The main body of this dissertation (Chapters 2 and 3) is organized as shown in Table 1.1,
and we conclude with a discussion in Chapter 4.

Problem domain Research platform ML algorithm

Chapter 2 video streaming (§2.1) Puffer (§2.2) Fugu (§2.3)
Chapter 3 congestion control (§3.2) Pantheon (§3.3) Indigo (§3.7)

Table 1.1: Outline of this dissertation’s main body

1.3 Summary of results

Puffer and Fugu (Chapter 2): To investigate video streaming and practical ML-based
ABR schemes in the real world, we built Puffer (§2.2), a publicly accessible website that
live-streams television channels for free. Puffer operates as a randomized controlled trial;
sessions are randomly assigned to one of a set of ABR schemes, and users are blinded to
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Results of primary Puffer experiment (Jan. 26–Aug. 7 & Aug. 30–Oct. 16, 2019)
Algorithm Time stalled Mean SSIM SSIM variation Mean duration

(lower is better) (higher is better) (lower is better) (time on site)

Fugu 0.13% 16.64 dB 0.74 dB 33.6 min
MPC-HM [128] 0.22% 16.61 dB 0.79 dB 30.8 min
BBA [51] 0.19% 16.56 dB 1.11 dB 32.1 min
Pensieve [70] 0.17% 16.26 dB 1.05 dB 31.6 min
RobustMPC-HM 0.12% 16.01 dB 0.98 dB 31.0 min

(See the caption of Table 2.1)
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(Adapted from the top panel of Figure 2.11)

algorithm assignment. As of June 2020, Puffer has attracted more than 120,000 real users
and streamed 60 years of video across the Internet.

In an eight-month randomized experiment we conducted in 2019 (details in §2.4), we
found that it is difficult for sophisticated or machine-learned control schemes to outperform
a “simple” scheme (buffer-based control), notwithstanding good performance in network
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emulators or simulators. We performed a statistical analysis and found that reliably measur-
ing ABR performance within 20% precision may require at least 2 years of video data per
scheme. The heavy-tailed nature of network and user behavior, as well as the challenges of
emulating diverse Internet paths during training, present obstacles for learned algorithms
in this real-world setting.

We then developed an ABR algorithm, Fugu (§2.3), that robustly outperformed other
schemes, by leveraging data from its deployment and limiting the scope of machine learning
only to making predictions that can be checked soon after. The system uses supervised
learning in situ, with data from the real deployment environment, to train a probabilistic
predictor of upcoming chunk transmission times. This module then informs a classical
control policy (model predictive control). With this design, Fugu belongs to a family of
approaches known as model-based reinforcement learning [78].

To support further investigation, we are publishing an archive of data and results every
day and opening our ongoing study to the community. We welcome other researchers
to use this platform to develop and validate new algorithms for bitrate selection, network
prediction, and congestion control.

Pantheon and Indigo (Chapter 3): To study Internet transport protocols and practical ML-
based congestion-control schemes, we built Pantheon (§3.3), a community “training ground”
and benchmark platform for Internet congestion-control research. Pantheon consists of a
software library containing a reference set of transport protocols and congestion-control
algorithms, a diverse testbed of network nodes on wireless and wired networks around the
world, and a continuous-testing system that regularly evaluates the Pantheon protocols over
the real Internet.

We used Pantheon to generate calibrated network emulators (§3.5) that capture the
diverse performance of real Internet paths. These enable reproducible and rapid experiments
that closely approximate real-world results.

As a community resource, Pantheon has assisted four algorithms from independent
research groups in publishing at NSDI 2018 [6, 33], ICML 2019 [53], and SIGCOMM
2020 [64] (§3.6). They deployed a series of prototypes on Pantheon and used Pantheon’s
measurements to evaluate their algorithms and inform each iteration in the design process.
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Pantheon also enabled our own ML-based congestion-control scheme, Indigo (§3.7).
At its core, Indigo learns to mimic the behavior of congestion-control oracles, idealized
algorithms that perfectly output a correct adjustment to the congestion window. Congestion-
control oracles only exist for emulated paths, so we trained Indigo in emulation using
imitation learning [97]. The emulated paths in training included Pantheon’s calibrated
emulators, which boosted Indigo’s performance by reducing the gap between simulation
and reality.
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Chapter 2

Puffer: Learning Adaptive Bitrate
Streaming In Situ

Video streaming is the predominant Internet application, making up almost three quarters
of all traffic [114]. One key algorithmic question in video streaming is adaptive bitrate
selection, or ABR, which decides the compression level selected for each “chunk,” or
segment, of the video. ABR algorithms optimize the user’s quality of experience (QoE):
more-compressed chunks reduce quality, but larger chunks may stall playback if the client
cannot download them in time.

In the academic literature, many recent ABR algorithms use statistical and machine-
learning methods [4, 70, 109–111, 128], which allow algorithms to consider many input
signals and try to perform well for a wide variety of clients. An ABR decision can depend
on recent throughput, client-side buffer occupancy, delay, the experience of clients on
similar ISPs or types of connectivity, etc. Machine learning can find patterns in seas of data
and is a natural fit for this problem domain.

However, it is a perennial lesson that the performance of learned algorithms depends
on the data or environments used to train them. ML approaches to video streaming and
other wide-area networking challenges are often hampered in their access to good and
representative training data. The Internet is complex and diverse, individual nodes only
observe a noisy sliver of the system dynamics, and behavior is often heavy-tailed and
changes with time. Even with representative throughput traces, accurately simulating or
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emulating the diversity of Internet paths requires more than replaying such traces and is
beyond current capabilities [41, 42, 87, 127].

As a result, the performance of algorithms in emulated environments may not generalize
to the Internet [10]. For example, CS2P’s gains were more modest over real networks than
in simulation [111]. Measurements of Pensieve [70] saw narrower benefits on similar
paths [26] and a large-scale streaming service [69]. Other learned algorithms, such as the
Remy congestion-control schemes, have also seen inconsistent results on real networks,
despite good results in simulation [127].

This chapter seeks to answer: what does it take to create a learned ABR algorithm
that robustly performs well over the wild Internet? We report the design and findings of
Puffer1, an ongoing research study that operates a video-streaming website open to the
public. Over the past year, Puffer has streamed 38.6 years of video to 63,508 distinct users,
while recording client telemetry for analysis (current load is about 60 stream-days of data
per day). Puffer randomly assigns each session to one of a set of ABR algorithms; users are
blinded to the assignment. We find:

In our real-world setting, sophisticated algorithms based on control theory [128] or
reinforcement learning [70] did not outperform simple buffer-based control [51]. We
found that more-sophisticated algorithms do not necessarily beat a simpler, older algorithm.
The newer algorithms were developed and evaluated using throughput traces that may not
have captured enough of the Internet’s heavy tails and other dynamics when replayed in
simulation or emulation. Training them on more-representative traces doesn’t necessarily
reverse this: we retrained one algorithm using throughput traces drawn from Puffer (instead
of its original set of traces) and evaluated it also on Puffer, but the results were similar
(§2.4.3).

Statistical margins of error in quantifying algorithm performance are considerable.
Prior work on ABR algorithms has claimed benefits of 10–15% [128], 3.2–14% [111],
or 12–25% [70], based on throughput traces or real-world experiments lasting hours or
days. However, we found that the empirical variability and heavy tails of throughput
evolution and rebuffering create statistical margins of uncertainty that make it challenging

1https://puffer.stanford.edu
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to detect real effects of this magnitude. Even with a year of experience per scheme, a 20%
improvement in rebuffering ratio would be statistically indistinguishable, i.e., below the
threshold of detection with 95% confidence. These uncertainties affect the design space of
machine-learning approaches that can practically be deployed [36, 71].

It is possible to robustly outperform existing schemes by combining classical control
with an ML predictor trained in situ on real data. We describe Fugu, a data-driven
ABR algorithm that combines several techniques. Fugu is based on MPC (model predictive
control) [128], a classical control policy, but replaces its throughput predictor with a
deep neural network trained using supervised learning on data recorded in situ (in place),
meaning from Fugu’s actual deployment environment, Puffer. The predictor has some
uncommon features: it predicts transmission time given a chunk’s file size (vs. estimating
throughput), it outputs a probability distribution (vs. a point estimate), and it considers
low-level congestion-control statistics among its input signals. Ablation studies (§2.3.6)
find each of these features to be necessary to Fugu’s performance.

In a controlled experiment during most of 2019, Fugu outperformed existing techniques—
including the simple algorithm—in stall ratio (with one exception), video quality, and the
variability of video quality (Table 2.1). The improvements were significant both statistically
and, perhaps, practically: users who were randomly assigned to Fugu (in blinded fashion)
chose to continue streaming for 5–9% longer, on average, than users assigned to the other
ABR algorithms.2

Our results suggest that, as in other domains, good and representative training is the key
challenge for robust performance of learned networking algorithms, a somewhat different
point of view from the generalizability arguments in prior work [70, 106, 124]. One way
to achieve representative training is to learn in place (in situ) on the actual deployment
environment, assuming the scheme can be feasibly trained this way and the deployment is
widely enough used to exercise a broad range of scenarios.3 The approach we describe here
is only a step in this direction, but we believe Puffer’s results suggest that learned systems

2This effect was driven solely by users streaming more than 3 hours of video; we do not fully understand
it.

3Even collecting traces from a deployment environment and replaying them in a simulator or emulator to
train a control policy—as is typically necessary in reinforcement learning—is not what we mean by “in situ.”
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Results of primary experiment (Jan. 26–Aug. 7 & Aug. 30–Oct. 16, 2019)
Algorithm Time stalled Mean SSIM SSIM variation Mean duration

(lower is better) (higher is better) (lower is better) (time on site)

Fugu 0.13% 16.64 dB 0.74 dB 33.6 min
MPC-HM [128] 0.22% 16.61 dB 0.79 dB 30.8 min
BBA [51] 0.19% 16.56 dB 1.11 dB 32.1 min
Pensieve [70] 0.17% 16.26 dB 1.05 dB 31.6 min
RobustMPC-HM 0.12% 16.01 dB 0.98 dB 31.0 min

Table 2.1: In an eight-month randomized controlled trial with blinded assignment, the
Fugu scheme outperformed other ABR algorithms. The primary analysis includes 637,189
streams played by 54,612 client IP addresses (13.1 client-years in total). Uncertainties are
shown in Figures 2.11 and 2.13.

will benefit by addressing the challenge of “how will we get enough representative scenarios
for training—what is enough, and how do we keep them representative over time?” as a
first-class consideration.

We intend to operate Puffer as an “open research” project as long as feasible. We invite
the research community to train and test new algorithms on randomized subsets of its traffic,
gaining feedback on real-world performance with quantified uncertainty. Along with this
dissertation, we are publishing an archive of data and results back to the beginning of 2019
on the Puffer website, with new data and results posted weekly.

In the next few sections, we discuss the background and related work on this problem
(§2.1), the design of our blinded randomized experiment (§2.2) and the Fugu algorithm
(§2.3), with experimental results in Section 2.4, and a discussion of results and limitations
in Section 2.5. In the appendices, we provide a standardized diagram of the experimental
flow for the primary analysis (Figure A.1) and describe the data we are releasing (§B).

2.1 Background and related work

The basic problem of adaptive video streaming has been the subject of much academic
work; for a good overview, we refer the reader to Yin et al. [128]. We briefly outline the
problem here. A service wishes to serve a pre-recorded or live video stream to a broad
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array of clients over the Internet. Each client’s connection has a different and unpredictable
time-varying performance. Because there are many clients, it is not feasible for the service
to adjust the encoder configuration in real time to accommodate any one client.

Instead, the service encodes the video into a handful of alternative compressed versions.
Each represents the original video but at a different quality, target bitrate, or resolution.
Client sessions choose from this limited menu. The service encodes the different versions
in a way that allows clients to switch midstream as necessary: it divides the video into
chunks, typically 2–6 seconds each, and encodes each version of each chunk independently,
so it can be decoded without access to any other chunks. This gives clients the opportunity
to switch between different versions at each chunk boundary; an illustration of this process
is in Figure 2.1. The different alternatives are generally referred to as different “bitrates,”
although streaming services today generally use “variable bitrate” (VBR) encoding [90],
where within each alternative stream, the chunks vary in compressed size [130].

Choosing which chunks to fetch. Algorithms that select which alternative version of each
chunk to fetch and play, given uncertain future throughput, are known as adaptive bitrate
(ABR) schemes. These schemes fetch chunks, accumulating them in a playback buffer,
while playing the video at the same time. The playhead advances and drains the buffer at
a steady rate, 1 s/s, but chunks arrive at irregular intervals dictated by the varying network
throughput and the compressed size of each chunk. If the buffer underflows, playback
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Figure 2.1: Illustration of switching between different video versions
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must stall while the client “rebuffers”: fetching more chunks before resuming playback.
Figure 2.2 gives an example of how the playback buffer changes over time; we refer to
the time spent fetching a chunk as the transmission time. The goal of an ABR algorithm
is typically framed as choosing the optimal sequence of chunks to fetch or replace [109],
given recent experience and guesses about the future, to minimize startup time and presence
of stalls, maximize the quality of chunks played back, and minimize variation in quality
over time (especially abrupt changes in quality). The importance tradeoff for these factors
is captured in a QoE metric; several studies have calibrated QoE metrics against human
behavior or opinion [8, 35, 60].

Adaptive bitrate selection. Researchers have produced a literature of ABR schemes,
including “rate-based” approaches that focus on matching the video bitrate to the network
throughput [55, 65, 75], “buffer-based” algorithms that steer the duration of the playback
buffer [51, 109, 110], and control-theoretic schemes that try to maximize expected QoE
over a receding horizon, given the upcoming chunk sizes and a prediction of the future
throughput.

Model Predictive Control (MPC), FastMPC, and RobustMPC [128] fall into the last
category. They comprise two modules: a throughput predictor that informs a predictive
model of what will happen to the buffer occupancy and QoE in the near future, depending
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on which chunks it fetches, with what quality and sizes. MPC uses the model to plan a
sequence of chunks over a limited horizon (e.g., the next 5–8 chunks) to maximize the
expected QoE. We implemented MPC and RobustMPC for Puffer, using the same predictor
as the paper: the harmonic mean of the last five throughput samples.

CS2P [111] and Oboe-tuned RobustMPC [4] are related to MPC; they constitute better
throughput predictors that inform the same control strategy (MPC). These throughput
predictors were trained on real datasets that recorded the evolution of throughput over time
within a session. CS2P clusters users by similarity and models their evolving throughput as
a Markovian process with a small number of discrete states; Oboe uses a similar model to
detect when the network path has changed state. In our dataset, we have not observed CS2P
and Oboe’s observation of discrete throughput states (Figure 2.3).

Fugu fits in this same category of algorithms. It also uses MPC as the control strategy,
informed by a network predictor trained on real data. This component, which we call
the Transmission Time Predictor (TTP), incorporates a number of uncommon features,
none of which can claim novelty on its own. The TTP explicitly predicts the transmission
time of a chunk with given size and isn’t a “throughput” predictor per se. A throughput
predictor models the transmission time of a chunk as scaling linearly with size, but it is
well known that observed throughput varies with file size [10, 90, 130], in part because of
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the effects of congestion control and because chunks of different sizes experience different
time intervals of the path’s varying capacity. To our knowledge, Fugu is the first to use this
fact operationally as part of a control policy.

Fugu’s predictor is also probabilistic: it outputs not a single predicted transmission
time, but a probability distribution on possible outcomes. The use of uncertainty in model
predictive control has a long history [103], but to our knowledge Fugu is the first to
use stochastic MPC in this context. Finally, Fugu’s predictor is a neural network, which
lets it consider an array of diverse signals that relate to transmission time, including raw
congestion-control statistics from the sender-side TCP implementation [43,118]. We found
that several of these signals (RTT, CWND, etc.) benefit ABR decisions (§2.4).

Pensieve [70] is an ABR scheme also based on a deep neural network. Unlike Fugu,
Pensieve uses the neural network not simply to make predictions but to make decisions
about which chunks to send. This affects the type of learning used to train the algorithm.
While CS2P and Fugu’s TTP can be trained with supervised learning (to predict chunk
transmission times recorded from past data), it takes more than data to train a scheme that
makes decisions; one needs training environments that respond to a series of decisions
and judge their consequences. This is known as reinforcement learning (RL). Generally
speaking, RL techniques expect a set of training environments that can exercise a control
policy through a range of situations and actions [3], and need to be able to observe a
detectable difference in performance by slightly varying a control action. Systems that are
challenging to simulate or that have too much noise present difficulties [36, 71].

2.2 Puffer: an ongoing live study of ABR

To understand the challenges of video streaming and measure the behavior of ABR schemes,
we built Puffer, a free, publicly accessible website that live-streams six over-the-air com-
mercial television channels (Figure 2.4). Puffer operates as a randomized controlled trial;
sessions are randomly assigned to one of a set of ABR or congestion-control schemes.
The study participants include any member of the public who wishes to participate. Users
are blinded to algorithm assignment, and we record client telemetry on video quality and
playback. A Stanford Institutional Review Board determined that Puffer does not constitute

18



Figure 2.4: Puffer website

human subjects research.
Our reasoning for streaming live television was to collect data from enough participants

and network paths to draw robust conclusions about the performance of algorithms for ABR
control and network prediction. Live television is an evergreen source of popular content
that had not been broadly available for free on the Internet. Our study benefits, in part,
from a law that allows nonprofit organizations to retransmit over-the-air television signals
without charge [1]. Here, we describe details of the system, experiment, and analysis.

2.2.1 Back-end: decoding, encoding, SSIM

Figure 2.5 shows the architecture of Puffer. Puffer receives six television channels using a
VHF/UHF antenna and an ATSC demodulator, which outputs MPEG-2 transport streams
in UDP. We wrote software to decode a stream to chunks of raw decoded video and
audio, maintaining synchronization (by inserting black fields or silence) in the event of
lost transport-stream packets on either substream. Video chunks are 2.002 seconds long,
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reflecting the 1/1001 factor for NTSC frame rates. Audio chunks are 4.8 seconds long.
Video is de-interlaced with ffmpeg to produce a “canonical” 1080p60 or 720p60 source
for compression.

Puffer encodes each video chunk in ten different H.264 versions, using libx264 in
veryfast mode. The encodings range from 240p60 video with constant rate factor (CRF)
of 26 (about 200 kbps) to 1080p60 video with CRF of 20 (about 5,500 kbps). Audio chunks
are encoded in the Opus format.

Puffer then uses ffmpeg to calculate each encoded chunk’s SSIM [121], a measure of
video quality, relative to the canonical source. This information is used by the objective
function of BBA, MPC, RobustMPC, and Fugu, and for our evaluation. In practice, the
relationship between bitrate and quality varies chunk-by-chunk (Figure 2.6), and users
cannot perceive compressed chunk sizes directly—only what is shown on the screen. ABR
schemes that maximize bitrate do not necessarily see a commensurate benefit in picture
quality (Figure 2.7).

Encoding six channels in ten versions each (60 streams total) with libx264 consumes
about 48 cores of an Intel x86-64 2.7 GHz CPU in steady state. Calculating the SSIM of
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each encoded chunk consumes an additional 18 cores.

2.2.2 Serving chunks to the browser

To make it feasible to deploy and test arbitrary ABR schemes, Puffer uses a “dumb” player
(using the HTML5 <video> tag and the JavaScript Media Source Extensions) on the client
side, and places the ABR scheme at the server. We have a 48-core server with 10 Gbps
Ethernet in a datacenter at Stanford. The browser opens a WebSocket (TLS/TCP) connection
to a daemon on the server. Each daemon is configured with a different TCP congestion
control (for the primary analysis, we used BBR [21]) and ABR scheme. Some schemes
are more efficiently implemented than others; on average the CPU load from serving client
traffic (including TLS, TCP, and ABR) is about 5% of an Intel x86-64 2.7 GHz core per
stream. Sessions are randomly assigned to serving daemons. Users can switch channels
without breaking their TCP connection and may have many “streams” within each session.

Puffer is not a client-side DASH [77] (Dynamic Adaptive Streaming over HTTP) system.
Like DASH, though, Puffer is an ABR system streaming chunked video over a TCP connec-
tion, and runs the same ABR algorithms that DASH systems can run. We don’t expect this
architecture to replace client-side ABR (which can be served by CDN edge nodes), but we
expect its conclusions to translate to ABR schemes broadly. The Puffer website works in
the Chrome, Firefox, Edge, and Opera browsers, including on Android phones, but does not
play in the Safari browser or on iOS (which lack support for the Media Source Extensions
or Opus audio).

2.2.3 Hosting arbitrary ABR schemes

We implemented buffer-based control (BBA), MPC, RobustMPC, and Fugu in back-end
daemons that serve video chunks over the WebSocket. We use SSIM in the objective
functions for each of these schemes. For BBA, we use the formula in the original paper [51]
to decide the maximum chunk size, and subject to this constraint, the chunk with the highest
SSIM is selected to stream. We also choose reservoir values consistent with our 15-second
maximum buffer.
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Deploying Pensieve for live streaming. We use the released Pensieve code (written in
Python with TensorFlow) directly. When a client is assigned to Pensieve, Puffer spawns a
Python subprocess running Pensieve’s multi-video model.

We contacted the Pensieve authors to request advice on deploying the algorithm in a live,
multi-video, real-world setting. The authors recommended that we use a longer-running
training and that we tune the entropy parameter when training the multi-video neural
network. We wrote an automated tool to train 6 different models with various entropy
reduction schemes. We tested these manually over a few real networks, then selected the
model with the best performance. We modified the Pensieve code (and confirmed with
the authors) so that it does not expect the video to end before a user’s session completes.
We were not able to modify Pensieve to optimize SSIM; it considers the average bitrate of
each Puffer stream. We adjusted the video chunk length to 2.002 seconds and the buffer
threshold to 15 seconds to reflect our parameters. For training data, we used the authors’
provided script to generate 1000 simulated videos as training videos, and a combination of
the FCC and Norway traces linked to in the Pensieve codebase as training traces.

2.2.4 The Puffer experiment

To recruit participants, we purchased Google and Reddit ads for keywords such as “live tv”
and “tv streaming” and paid people on Amazon Mechanical Turk to use Puffer. We were
also featured in press articles. Popular programs (e.g. the 2019 and 2020 Super Bowls, the
Oscars, World Cup, and “Bachelor in Paradise”) brought large spikes (> 20×) over baseline
load. Our current average load is about 60 concurrent streams.

Between Jan. 26, 2019 and Feb. 2, 2020, we have streamed 38.6 years of video to 63,508
registered study participants using 111,231 unique IP addresses. About eight months of
that period was spent on the “primary experiment,” a randomized trial comparing Fugu
with other algorithms: MPC, RobustMPC, Pensieve, and BBA (a summary of features is in
Table 2.2). This period saw a total of 314,577 streaming sessions, and 1,904,316 individual
streams. An experimental-flow diagram in the standardized CONSORT format [102] is in
Appendix A.

We record client telemetry as time-series data, detailing the size and SSIM of every
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Algorithm Control Predictor Optimization goal How trained

BBA linear control n/a +SSIM s.t. bitrate < limit n/a
MPC-HM MPC HM +SSIM, –stalls, –ΔSSIM n/a
RobustMPC-HM robust MPC HM +SSIM, –stalls, –ΔSSIM n/a
Pensieve DNN n/a +bitrate, –stalls, –Δbitrate RL in simulation
Fugu MPC DNN +SSIM, –stalls, –ΔSSIM supervised learning in situ

Table 2.2: Distinguishing features of algorithms used in the primary experiment. HM =
harmonic mean of last five throughput samples. MPC = model predictive control. DNN =
deep neural network. RL = reinforcement learning.

video chunk, the time to deliver each chunk to the client, the buffer size and rebuffering
events at the client, the TCP statistics on the server, and the identity of the ABR and
congestion-control schemes. A full description of the data is in Appendix B.

Metrics and statistical uncertainty. We group the time series by user stream to calculate
a set of summary figures: the total time between the first and last recorded events of the
stream, the startup time, the total watch time between the first and last successfully played
portion of the stream, the total time the video is stalled for rebuffering, the average SSIM,
and the chunk-by-chunk variation in SSIM. The ratio between “total time stalled” and “total
watch time” is known as the rebuffering ratio or stall ratio, and is widely used to summarize
the performance of streaming video systems [63].

We observe considerable heavy-tailed behavior in most of these statistics. Watch times
are skewed (Figure 2.13), and while the risk of rebuffering is important to any ABR
algorithm, actual rebuffering is a rare phenomenon. Of the 637,189 eligible streams
considered for the primary analysis across all five ABR schemes, only 24,328 (4%) of those
streams had any stalls, mirroring commercial services [63].

These skewed distributions create more room for the play of chance to corrupt the
bottom-line statistics summarizing a scheme’s performance—even two identical schemes
will see considerable variation in average performance until a substantial amount of data
is assembled. In this study, we worked to quantify the statistical uncertainty that can
be attributed to the play of chance in assigning sessions to ABR algorithms. We calcu-
late confidence intervals on rebuffering ratio with the bootstrap method [37], simulating
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streams drawn empirically from each scheme’s observed distribution of rebuffering ratio as
a function of stream duration. We calculate confidence intervals on average SSIM using the
formula for weighted standard error, weighting each stream by its duration.

These practices result in substantial confidence intervals: with at least 2.5 years of
data for each scheme, the width of the 95% confidence interval on a scheme’s stall ratio
is between ±13% and ±21% of the mean value. This is comparable to the magnitude
of the total benefit reported by some academic work that used much shorter real-world
experiments (Appendix C shows the consequences of reporting performance on insufficient
data). Even a recent study of a Pensieve-like scheme on Facebook [69], encompassing 30
million streams, did not detect a change in rebuffering ratio outside the level of statistical
noise.

We conclude that considerations of uncertainty in real-world learning and experimen-
tation, especially given uncontrolled data from the Internet with real users, deserve further
study. Strategies to import real-world data into repeatable emulators [127] or reduce their
variance [71] will likely be helpful in producing robust learned networking algorithms.

2.3 Fugu: design and implementation

Fugu is a control algorithm for bitrate selection, designed to be feasibly trained in place
(in situ) on a real deployment environment. It consists of a classical controller (model
predictive control, the same as in MPC-HM), informed by a nonlinear predictor that can be
trained with supervised learning.

Figure 2.8 shows Fugu’s high-level design. Fugu runs on the server, making it easy to
update its model and aggregate performance data across clients over time. Clients send
necessary telemetry, such as buffer levels, to the server.

The controller, described in Section 2.3.4, makes decisions by following a classical
control algorithm to optimize an objective QoE function (§2.3.1) based on predictions
for how long each chunk would take to transmit. These predictions are provided by the
Transmission Time Predictor (TTP) (§2.3.2), a neural network that estimates a probability
distribution for the transmission time of a proposed chunk with given size.
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Figure 2.8: Overview of Fugu

2.3.1 Objective function

For each video chunk 𝐾𝑖, Fugu has a selection of versions of this chunk to choose from,
𝐾 𝑠
𝑖
, each with a different size 𝑠. As with prior approaches, Fugu quantifies the QoE of

each chunk as a linear combination of video quality, video quality variation, and stall
time [128]. Unlike some prior approaches, which use the average compressed bitrate of
each encoding setting as a proxy for image quality, Fugu optimizes a perceptual measure of
picture quality—in our case, SSIM. This has been shown to correlate with human opinions
of QoE [35]. We emphasize that we use the exact same objective function in our version of
MPC and RobustMPC as well.

Let 𝑄(𝐾) be the video quality of a chunk 𝐾 , 𝑇 (𝐾) be the uncertain transmission time
of 𝐾 , and 𝐵𝑖 be the current playback buffer size. Following [128], Fugu defines the QoE
obtained by sending 𝐾 𝑠

𝑖
(given the previously sent chunk 𝐾𝑖−1) as

𝑄𝑜𝐸 (𝐾 𝑠𝑖 , 𝐾𝑖−1) = 𝑄(𝐾 𝑠𝑖 ) − _ |𝑄(𝐾 𝑠𝑖 ) −𝑄(𝐾𝑖−1) |

− ` · max{𝑇 (𝐾 𝑠𝑖 ) − 𝐵𝑖, 0},
(2.1)

where max{𝑇 (𝐾 𝑠
𝑖
) − 𝐵𝑖, 0} describes the stall time experienced by sending 𝐾 𝑠

𝑖
, and _ and `

are configuration constants for how much to weight video quality variation and rebuffering.
Fugu plans a trajectory of sizes 𝑠 of the future 𝐻 chunks to maximize their expected total
QoE.
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2.3.2 Transmission Time Predictor (TTP)

Once Fugu decides which chunk from 𝐾 𝑠
𝑖

to send, two portions of the QoE become known:
the video quality and video quality variation. The remaining uncertainty is the stall time.
The server knows the current playback buffer size, so what it needs to know is the transmis-
sion time: how long will it take for the client to receive the chunk? Given an oracle that
reports the transmission time of any chunk, the MPC controller can compute the optimal
plan to maximize QoE.

Fugu uses a trained neural-network transmission-time predictor to approximate the
oracle. For each chunk in the fixed 𝐻-step horizon, we train a separate predictor. E.g., if
optimizing for the total QoE of the next five chunks, five neural networks are trained. This
lets us parallelize training.

Each TTP network for the future step ℎ ∈ {0, . . . , 𝐻 − 1} takes as input a vector of:

1. sizes of past 𝑡 chunks 𝐾𝑖−𝑡 , . . . , 𝐾𝑖−1,

2. actual transmission times of past 𝑡 chunks: 𝑇𝑖−𝑡 , . . . , 𝑇𝑖−1,

3. internal TCP statistics (Linux tcp_info structure),

4. size 𝑠 of a proposed chunk 𝐾 𝑠
𝑖+ℎ.

The TCP statistics include the current congestion window size, the number of unacknowl-
edged packets in flight, the smoothed RTT estimate, the minimum RTT, and the TCP
estimated throughput (tcpi_delivery_rate).

Prior approaches have used Harmonic Mean (HM) [128] or a Hidden Markov Model
(HMM) [111] to predict a single throughput for the entire lookahead horizon irrespective
of the size of chunk to send. In contrast, the TTP acknowledges the fact that observed
throughput varies with chunk size [10, 90, 130] by taking the size of proposed chunk 𝐾 𝑠

𝑖+ℎ
as an explicit input. In addition, it outputs a discretized probability distribution of predicted
transmission time 𝑇 (𝐾 𝑠

𝑖+ℎ).
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2.3.3 Training the TTP

We sample from the real usage data collected by any scheme running on Fugu and feed
individual user streams to the TTP as training input. For the TTP network in the future step
ℎ, each user stream contains a chunk-by-chunk series of (a) the input 4-vector with the last
element to be size of the actually sent chunk 𝐾𝑖+ℎ, and, (b) the actual transmission time 𝑇𝑖+ℎ
of chunk 𝐾𝑖+ℎ as desired output; the sequence is shuffled to remove correlation. It is worth
noting that unlike prior work [70, 111] that learned from throughput traces, TTP is trained
directly on real chunk-by-chunk data.

We train the TTP with standard supervised learning: the training minimizes the cross-
entropy loss between the output probability distribution and the discretized actual transmis-
sion time using stochastic gradient descent.

We retrain the TTP every day, using training data collected over the prior 14 days, to
avoid the effects of dataset shift and catastrophic forgetting [94, 96]. Within the 14-day
window, we weight more recent days more heavily. The weights from the previous day’s
model are loaded to warm-start the retraining.

2.3.4 Model-based controller

Our MPC controller (used for MPC-HM, RobustMPC-HM, and Fugu) is a stochastic optimal
controller that maximizes the expected cumulative QoE in Equation 2.1 with replanning. It
queries TTP for predictions of transmission time and outputs a plan 𝐾 𝑠

𝑖
, 𝐾 𝑠

𝑖+1, . . . , 𝐾
𝑠
𝑖+𝐻−1 by

value iteration [12]. After sending 𝐾 𝑠
𝑖
, the controller observes and updates the input vector

passed into TTP, and replans again for the next chunk.
Given the current playback buffer level 𝐵𝑖 and the last sent chunk 𝐾𝑖−1, let 𝑣∗

𝑖
(𝐵𝑖, 𝐾𝑖−1)

denote the maximum expected sum of QoE that can be achieved in the 𝐻-step lookahead
horizon. We have value iteration as follows:

𝑣∗𝑖 (𝐵𝑖, 𝐾𝑖−1) = max
𝐾𝑠
𝑖

{∑︁
𝑡𝑖

Pr[𝑇 (𝐾 𝑠𝑖 ) = 𝑡𝑖]·

(𝑄𝑜𝐸 (𝐾 𝑠𝑖 , 𝐾𝑖−1) + 𝑣∗𝑖+1(𝐵𝑖+1, 𝐾
𝑠
𝑖 ))

}
,

(2.2)

where Pr[𝑇 (𝐾 𝑠
𝑖
) = 𝑡𝑖] is the probability predicted by TTP for the transmission time of 𝐾 𝑠

𝑖
to
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be 𝑡𝑖, and 𝐵𝑖+1 can be derived by system dynamics [128] given an enumerated (discretized)
𝑡𝑖. The controller computes the optimal trajectory by solving the above value iteration with
dynamic programming (DP). To make the DP computational feasible, it also discretizes 𝐵𝑖
into bins and uses forward recursion with memoization to only compute for relevant states.

2.3.5 Implementation

TTP takes as input the past 𝑡 = 8 chunks, and outputs a probability distribution over 21 bins
of transmission time: [0, 0.25), [0.25, 0.75), [0.75, 1.25), . . . , [9.75,∞), with 0.5 seconds
as the bin size except for the first and the last bins. TTP is a fully connected neural network,
with two hidden layers with 64 neurons each. We tested different TTPs with various numbers
of hidden layers and neurons, and found similar training losses across a range of conditions
for each. We implemented TTP and the training in PyTorch, but we load the trained model
in C++ when running on the production server for performance. A forward pass of TTP’s
neural network in C++ imposes minimal overhead per chunk (less than 0.3 ms on average
on a recent x86-64 core). The MPC controller optimizes over 𝐻 = 5 future steps (about 10
seconds). We set _ = 1 and ` = 100 to balance the conflicting goals in QoE. Each retraining
takes about 6 hours on a 48-core server.

2.3.6 Ablation study of TTP features

We performed an ablation study to assess the impact of the TTP’s features (Figure 2.9). The
prediction accuracy is measured using mean squared error (MSE) between the predicted
transmission time and the actual (absolute, unbinned) value. For the TTP that outputs
a probability distribution, we compute the expected transmission time by weighting the
median value of each bin with the corresponding probability. Here are the more notable
results:

Use of low-level congestion-control statistics. The TTP’s nature as a DNN lets it consider
a variety of noisy inputs, including low-level congestion-control statistics. We feed the
kernel’s tcp_info structure to the TTP, and find that several of these fields contribute
positively to the TTP’s accuracy, especially the RTT, CWND, and number of packets
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TTP (Probabilistic)
TTP (Point Estimate)

Throughput Predictor
Linear Regression (no DNN)

Harmonic Mean (HM)

TCP Delivery Rate
TTP (Probabilistic)

No History
No History + No Delivery Rate

No History + No RTT or min RTT
No History + No CWND or Packets in Flight

Mean Squared Error of Transmission Time Prediction

Figure 2.9: Ablation study of Fugu’s Transmission Time Predictor (TTP). Removing any
of the TTP’s inputs reduced its ability to predict the transmission time of a video chunk. A
non-probabilistic TTP (“Point Estimate”) and one that predicts throughput without regard
to chunk size (“Throughput Predictor”) both performed markedly worse. TCP statistics
(RTT, CWND, packets in flight) also proved helpful.

in flight (Figure 2.9). Although client-side ABR systems cannot typically access this
structure directory because the statistics live on the sender, these results should motivate
the communication of richer data to ABR algorithms wherever they live.

Transmission-time prediction. The TTP explicitly considers the size of a proposed
chunk, rather than predicting throughput and then modeling transmission time as scaling
linearly with chunk size [10,90,130]. We compared the TTP with an equivalent throughput
predictor that is agnostic to the chunk’s size (keeping everything else unchanged). The
TTP’s predictions were much more accurate (Figure 2.9).
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Prediction with uncertainty. The TTP outputs a probability distribution of transmission
times. This allows for better decision making compared with a single point estimate without
uncertainty. We evaluated the expected accuracy of a probabilistic TTP vs. a point-estimate
version that outputs the median value of the most-probable bin, and found an improvement
in prediction accuracy with the former (Figure 2.9). To measure the end-to-end benefits of
a probabilistic TTP, we deployed both versions on Fugu in August 2019 and collected 39
stream-days of data. It performed much worse than normal Fugu: the rebuffering ratio was
5× worse, without significant improvement in SSIM (data not shown).

Use of neural network. We found a significant benefit from using a deep neural network
in this application, compared with a linear-regression model that was trained the same
way. The latter model performed much worse on prediction accuracy (Figure 2.9). We
also deployed it on Fugu and collected 448 stream-days of data in Aug.–Oct. 2019; its
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Figure 2.10: Fugu, which is retrained every day, did not outperform older versions of itself
that were trained up to 11 months earlier. Our practice of daily retraining appears to be
overkill.
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rebuffering ratio was 2.5× worse (data not shown).

Daily retraining. To evaluate our practice of retraining the TTP each day, we conducted
a randomized comparison of several “out-of-date” versions of the TTP on Fugu between
Aug. 7 and Aug. 30, 2019, and between Oct. 16, 2019 and Jan. 2, 2020. We compared
vintages of the TTP that had been trained in February, March, April, and May 2019,
alongside the TTP that is retrained each day. (We emphasize that the older TTP vintages
were also learned in situ on two weeks of data from the actual deployment environment—
they are simply earlier versions of the same predictor.) Somewhat to our surprise and
disappointment, we were not able to document a benefit from daily retraining (Figure 2.10).
This may reflect a lack of dynamism in the Fugu userbase, or the fact that once “enough”
data is available to put the predictor through its paces, more-recent data is not necessarily
beneficial, or some other reason. We suspect the older predictors might become stale at
some point in the future, but for the moment, our practice of daily retraining appears to be
overkill.

2.4 Experimental results

We now present findings from our experiments with the Puffer study, including the evaluation
of Fugu. Our main results are shown in Figure 2.11. In summary, we conducted a parallel-
group, blinded-assignment, randomized controlled trial of five ABR schemes between
Jan. 26 and Aug. 7, and between Aug. 30 and Oct. 16, 2019. The data include 13.1 stream-
years of data split across five algorithms, counting all streams that played at least 4 seconds
of video. A standardized diagram of the experimental flow is available in the appendix
(Figure A.1).

We found that simple “buffer-based” control (BBA) performs surprisingly well, despite
its status as a frequently outperformed research baseline. The only scheme to consistently
outperform BBA in both stalls and quality was Fugu, but only when all features of the
TTP were used. If we remove the probabilistic “fuzzy” nature of Fugu’s predictions, or
the “depth” of the neural network, or the prediction of transmission time as a function of
chunk size (and not simply throughput), Fugu forfeits its advantage (§2.3.6). Fugu also
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Figure 2.11: Main results. (caption continued on next page)
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Figure 2.11: (caption continued from previous page) In a blinded randomized controlled trial
that included 13.1 years of video streamed to 54,612 client IP addresses over an eight-month
period, Fugu reduced the fraction of time spent stalled (except with respect to RobustMPC-
HM), increased SSIM, and reduced SSIM variation within each stream (tabular data in
Table 2.1). “Slow” network paths have average throughput less than 6 Mbit/s; following
prior work [70, 128], these paths are more likely to require nontrivial bitrate-adaptation
logic. Such streams accounted for 14% of overall viewing time and 83% of stalls. Error
bars show 95% confidence intervals.
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Figure 2.12: On a cold start, Fugu’s ability to bootstrap ABR decisions from TCP statistics
(e.g., RTT) boosts initial quality.

outperformed other schemes in terms of SSIM variability (Table 2.1). On a cold start to a
new session, prior work [54, 111] suggested a need for session clustering to determine the
quality of the first chunk. TTP provides an alternative approach: low-level TCP statistics
are available as soon as the (HTTP/WebSocket, TLS, TCP) connection is established and
allow Fugu to begin safely at a higher quality (Figure 2.12).

We conclude that robustly beating “simple” algorithms with machine learning may be
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surprisingly difficult, notwithstanding promising results in contained environments such
as simulators and emulators. The gains that learned algorithms have in optimization or
smarter decision making may come at a tradeoff in brittleness or sensitivity to heavy-tailed
behavior.

2.4.1 Fugu users streamed for longer

We observed significant differences in the session durations of users across algorithms
(Figure 2.13). Users whose sessions were assigned to Fugu chose to remain on the Puffer
video player about 5–9% longer, on average, than those assigned to other schemes. Users
were blinded to the assignment, and we believe the experiment was carefully executed
not to “leak” details of the underlying scheme (MPC and Fugu even share most of their
codebase). The average difference was driven solely by the upper 4% tail of viewership
duration (sessions lasting more than 3 hours)—viewers assigned to Fugu are much more
likely to keep streaming beyond this point, even as the distributions are nearly identical until
then.

Time-on-site is a figure of merit in the video-streaming industry and might be increased
by delivering better-quality video with fewer stalls, but we simply do not know enough
about what is driving this phenomenon. In fact, although Fugu achieves the highest SSIM
on average in the primary experiment (Figure 2.11), the difference in video quality between
Fugu and RobustMPC (lowest average SSIM) is unlikely to be perceptible from any single
video chunk; RobustMPC even has a lower stall ratio than Fugu. Therefore, time-on-site
might also be correlated with variation in quality over time and other metrics affecting QoE.

2.4.2 The benefits of learning in situ

Each of the ABR algorithms we deployed has been evaluated in emulation in prior
work [70, 128]. Notably, the results in those works are qualitatively different from some
of the real world results we have seen here—for example, buffer-based control matching or
outperforming MPC-HM and Pensieve.

To investigate this further, we constructed an emulation environment similar to that
used in [70]. This involved running the Puffer media server locally, and launching headless
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Figure 2.13: Users randomly assigned to Fugu chose to remain on the Puffer video player
about 5%–9% longer, on average, than those assigned to other schemes. Users were blinded
to the assignment. Legend shows 95% confidence intervals on the average time-on-site in
minutes.

Chrome clients inside mahimahi [82] shells to connect to the server. Each mahimahi shell
imposed a 40 ms end-to-end delay on traffic originating inside it and limited the downlink
capacity over time to match the capacity recorded in a set of FCC broadband network
traces [25]. As in the Pensieve evaluation, uplink speeds in all shells were capped at 12
Mbps. Within this test setup, we automated 12 clients to repeatedly connect to the media
server, which would play a 10 minute clip recorded on NBC over each network trace in the
dataset. Each client was assigned to a different ABR algorithm, and played the 10 minute
video repeatedly over more than 15 hours of FCC traces. Results are shown in Figure 2.14.

We trained a version of Fugu in this emulation environment to evaluate its performance.
Compared with the in situ Fugu—or with every other ABR scheme—the real-world perfor-
mance of emulation-trained Fugu was horrible (Figure 2.14b). Looking at the other ABR
schemes, almost each of them lies somewhere along the SSIM/stall frontier in emulation
(Figure 2.14a), with Pensieve rebuffering the least and MPC delivering the highest quality
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(a) Performance in emulation, run in mahimahi [82] using the FCC traces [25], following the method
of Pensieve [70].
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(b) During Jan. 26–Apr. 2, 2019, we randomized sessions to a set of algorithms including “emulation-
trained Fugu.” For Fugu, training in emulation did not generalize to the deployment environment.
In addition, emulation results (left) are not indicative of real-world performance.
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Figure 2.14: Gap between simulation and reality (Puffer).

video. In the real experiment (Figure 2.14b), we see a more muddled picture, with a different
qualitative arrangement of schemes.

2.4.3 Remarks on Pensieve and RL for ABR

The original Pensieve paper [70] demonstrated that Pensieve outperformed MPC-HM,
RobustMPC-HM, and BBA in both emulation-based tests and in video streaming tests on
low and high-speed real-world networks. Our results differ; we believe the mismatch may
have occurred for several reasons.

First, we have found that simulation-based training and testing do not capture the vagaries
of the real-world paths seen in the Puffer study. Unlike real-world randomized trials,
trace-based emulators and simulators allow experimenters to limit statistical uncertainty
by running different algorithms on the same conditions, eliminating the effect of the play
of chance in giving different algorithms a different distribution of watch times, network
behaviors, etc. However, it is difficult to characterize the systematic uncertainty that comes
from selecting a set of traces that may omit the variability or heavy-tailed nature of a real
deployment experience (both network behaviors as well as user behaviors, such as watch
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duration).
Reinforcement learning (RL) schemes such as Pensieve may be at a particular disad-

vantage from this phenomenon. Unlike supervised learning schemes that can learn from
training “data,” RL typically requires a training environment to respond to a sequence of
control decisions and decide on the appropriate consequences and reward. That environ-
ment could be real life instead of a simulator, but the level of statistical noise we observe
would make this type of learning extremely slow or require an extremely broad deployment
of algorithms in training. RL relies on being able to slightly vary a control action and
detect a change in the resulting reward. By our calculations, the variability of inputs is such
that it takes about 2 stream-years of data to reliably distinguish two ABR schemes whose
innate “true” performance differs by 15%. To make RL practical, future work may need to
explore techniques to reduce this variability [71] or construct more faithful simulators and
emulators that model tail behaviors and capture additional dynamics of the real Internet that
are not represented in throughput traces (e.g. varying RTT, cross traffic, interaction between
throughput and chunk size [10]).

Second, most of the evaluation of Pensieve in the original paper focused on training and
evaluating Pensieve using a single test video. As a result, the state space that model had
to explore was inherently more limited. Evaluation of the Pensieve “multi-video model”—
which we have to use for our experimental setting—was more limited. Our results are
more consistent with a recent large-scale study of a Pensieve-multi-video-like scheme on
30 million streams at Facebook [69].

Third, Figure 2.14c shows that the distribution of throughputs in the FCC traces differs
markedly from those on Puffer. This dataset shift could have harmed the performance
of Pensieve, which was trained on the FCC traces. In response to reviewer feedback, we
trained a version of Pensieve on throughput traces randomly sampled from real Puffer video
sessions. This is essentially as close to a “learned in situ” version of Pensieve as we think
we can achieve, but is not quite the same (§2.4.3). We compared “Pensieve on Puffer traces”
with the original Pensieve, BBA, and Fugu between Jan. 2 and Feb. 2, 2020 (Figure 2.15).
The results were broadly similar; the new Pensieve achieved better performance, but was
still significantly worse than BBA and Fugu. The results deserve further study; they suggest
that the representativeness of training data is not the end of the story when it comes to the
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Figure 2.15: During Jan. 2–Feb. 2, 2020, we evaluated a version of Pensieve that was
trained on a collection of network traces drawn randomly from actual Puffer sessions. This
improved its performance compared with the original Pensieve, but the overall results were
broadly similar.
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real-world performance of RL schemes trained in simulation.

Finally, Pensieve optimizes a QoE metric centered around bitrate as a proxy for video
quality. We did not alter this and leave the discussion to Section 2.5. Figure 2.7 shows that
Pensieve was the #2 scheme in terms of bitrate (below BBA) in the primary analysis. We
emphasize that our findings do not indicate that Pensieve cannot be a useful ABR algorithm,
especially in a scenario where similar, pre-recorded video is played over a familiar set of
known networks.

2.5 Limitations

The design of the Puffer experiment and the Fugu system are subject to important limitations
that may affect their performance and generalizability.

2.5.1 Limitations of the experiments

Our randomized controlled trial represents a rigorous, but necessarily “black box,” study of
ABR algorithms for video streaming. We don’t know the true distribution of network paths
and throughput-generating processes; we don’t know the participants or why the distribution
in watch times differs by assigned algorithm; we don’t know how to emulate these behaviors
accurately in a controlled environment.

We have supplemented this black-box work with ablation analyses to relate the real-
world performance of Fugu to the 𝑙2 accuracy of its predictor, and have studied various
ablated versions of Fugu in deployment. However, ultimately part of the reason for this
dissertation is that we cannot replicate the experimental findings outside the real world—a
real world whose behavior is noisy and takes lots of time to measure precisely. That may be
an unsatisfying conclusion, and we doubt it will be the final word on this topic. Perhaps it
will become possible to model enough of the vagaries of the real Internet “in silico” to enable
the development of robust control strategies without extensive real-world experiments.

It is also unknown to what degree Puffer’s results—which are about a single server
in a university datacenter, sending to clients across our entire country over the wide-area
Internet—generalize to a different server at a different institution, much less the more typical
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paths between a user on an access network and their nearest CDN edge node. We don’t
know for sure if the pre-trained Fugu model would work in a different location, or whether
training a new Fugu based on data from that location would yield comparable results. Our
results show that learning in situ works, but we don’t know how specific the situs needs
to be. And while we expect that Fugu could be implemented in the context of client-side
ABR (especially if the server is willing to share its tcp_info statistics with the client), we
haven’t demonstrated this.

Although we believe that past research papers may have underestimated the uncertainties
in real-world measurements with realistic Internet paths and users, we also may be guilty of
underestimating our own uncertainties or emphasizing uncertainties that are only relevant
to small or medium-sized academic studies, such as ours, and irrelevant to the industry.
The current load on Puffer is about 60 concurrent streams on average, meaning we collect
about 60 stream-days of data per day. Our primary analysis covers about 2.6 stream-years
of data per scheme collected over an eight-month period, and was sufficient to measure its
performance metrics to within about ±15% (95% CI). By contrast, we understand YouTube
has an average load of more than 60 million concurrent streams at any given time. We
imagine the considerations of conducting data-driven experiments at this level may be
completely different—perhaps less about statistical uncertainty, and more about systematic
uncertainties and the difficulties of running experiments and accumulating so much data.

Some of Fugu’s performance (and that of MPC, RobustMPC, and BBA) relative to
Pensieve may be due to the fact that these four schemes received more information as they
ran—namely, the SSIM of each possible version of each future chunk—than did Pensieve.
It is possible that an “SSIM-aware” Pensieve might perform better. The load of calculating
SSIM for each encoded chunk is not insignificant—about an extra 40% on top of encoding
the video.

2.5.2 Limitations of Fugu

There is a sense that data-driven algorithms that more “heavily” squeeze out performance
gains may also put themselves at risk to brittleness when a deployment environment drifts
from one where the algorithm was trained. In that sense, it is hard to say whether Fugu’s
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performance might decay catastrophically some day. We tried and failed to demonstrate a
quantitative benefit from daily retraining over “out-of-date” vintages, but at the same time,
we cannot be sure that some surprising detail tomorrow—e.g., a new user from an unfamiliar
network—won’t send Fugu into a tailspin before it can be retrained. A year of data on a
growing userbase suggests, but doesn’t guarantee, robustness to a changing environment.

Fugu does not consider several issues that other research has concerned itself with—
e.g., being able to “replace” already-downloaded chunks in the buffer with higher quality
versions [109], or optimizing the joint QoE of multiple clients who share a congestion
bottleneck [80].

Fugu is not tied as tightly to the TCP or congestion control as it might be—for example,
Fugu could wait to send a chunk until the TCP sender tells it that there is a sufficient
congestion window for most of the chunk (or the whole chunk) to be sent immediately.
Otherwise, it might choose to wait and make a better-informed decision later. Fugu does
not schedule the transmission of chunks—it will always send the next chunk as long as the
client has room in its playback buffer.
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Chapter 3

Pantheon: Training Ground for
Congestion Control

3.1 Introduction

Despite thirty years of research, Internet congestion control and the development of
transport-layer protocols remain cornerstone problems in computer networking. Congestion
control was originally motivated by the desire to avoid catastrophic network collapses [52],
but today it is responsible for much more: allocating capacity among contending applica-
tions, minimizing delay and variability, and optimizing high-level metrics such as video
re-buffering, Web page load time, the completion of batch jobs in a datacenter, or users’
decisions to engage with a website.

In the past, the prevailing transport protocols and congestion-control schemes were
developed by researchers [44, 52] and tested in academic networks or other small testbeds
before broader deployment across the Internet. Today, however, the Internet is more diverse,
and studies on academic networks are less likely to generalize to, e.g., CDN nodes streaming
video at 80 Gbps [81], smartphones on overloaded mobile networks [22], or security cameras
connected to home Wi-Fi networks.

As a result, operators of large-scale systems have begun to develop new transport
algorithms in-house. Operators can deploy experimental algorithms on a small subset of
their live traffic (still serving millions of users), incrementally improving performance and
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broadening deployment as it surpasses existing protocols on their live traffic [5, 21, 63].
These results, however, are rarely reproducible outside the operators of large services.

Outside of such operators, research is usually conducted on a much smaller scale,
still may not be reproducible, and faces its own challenges. Researchers often create a
new testbed each time—interesting or representative network paths to be experimented
over—and must fight “bit rot” to acquire, compile, and execute prior algorithms in the
literature so they can be fairly compared against. Even so, results may not generalize to the
wider Internet. Examples of this pattern in the academic literature include Sprout [125],
Verus [129], and PCC [32].

This dissertation describes the Pantheon: a distributed, collaborative system for re-
searching and evaluating end-to-end networked systems, especially congestion-control
schemes, transport protocols, and network emulators. The Pantheon has four parts:

1. a software library containing a growing collection of transport protocols and congestion-
control algorithms, each verified to compile and run by a continuous-integration
system, and each exposing the same interface to start or stop a full-throttle flow,

2. a diverse testbed of network nodes on wireless and wired networks around the world,
including cellular networks in Stanford (U.S.), Guadalajara (Mexico), São Paulo
(Brazil), Bogotá (Colombia), New Delhi (India), and Beĳing (China), and wired
networks in all of the above locations as well as London (U.K.), Iowa (U.S.), Tokyo
(Japan), and Sydney (Australia),

3. a collection of network emulators, each calibrated to match the performance of a real
network path between two nodes, or to capture some form of pathological network
behavior, and

4. a continuous-testing system that regularly evaluates the Pantheon protocols over the
real Internet between pairs of testbed nodes, across partly-wireless and all-wired
network paths, and over each of the network emulators, in single- and multi-flow
scenarios, and publicly archives the resulting packet traces and analyses at https:
//pantheon.stanford.edu.
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The Pantheon’s calibrated network emulators address a tension that protocol designers
face between experimental realism and reproducibility. Simulators and emulators are
reproducible and allow rapid experimentation, but may fail to capture important dynamics
of real networks [41, 42, 87]. To resolve this tension, the Pantheon generates network
emulators calibrated to match real Internet paths, graded by a novel figure of merit: their
accuracy in matching the performance of a set of transport algorithms. Rather than focus on
the presence or absence of modeled phenomena (jitter, packet loss, reordering), this metric
describes how well the end-to-end performance (e.g., throughput, delay, and loss rate) of a
set of algorithms, run over the emulated network, matches the corresponding performance
statistics of the same algorithms run over a real network path.

Motivated by the success of ImageNet [31] and OpenAI Gym [18] in the machine learn-
ing community, we believe a common reference set of runnable benchmarks, continuous
experimentation and improvement, and a public archive of results will enable faster inno-
vation and more effective, reproducible research. Early adoption by independent research
groups provides encouraging evidence that this is succeeding.

Summary of results:

• Examining more than a year of measurements from the Pantheon, we find that trans-
port performance is highly variable across the type of network path, bottleneck
network, and time. There is no single existing protocol that performs well in all
settings. Furthermore, many protocols perform differently from how their creators
intended and documented (§3.4).

• We find that a small number of network-emulator parameters (bottleneck link rate,
isochronous or memoryless packet inter-arrival timing, bottleneck buffer size, stochas-
tic per-packet loss rate, and propagation delay) is sufficient to replicate the perfor-
mance of a diverse library of transport protocols (with each protocol matching its
real-world throughput and delay to within 17% on average), in the presence of both
natural and synthetic cross traffic. These results go against some strains of thought
in computer networking, which have focused on building detailed network emula-
tors (with mechanisms to model jitter, reordering, the arrival and departure of cross
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traffic, MAC dynamics, etc.), while leaving the questions open of how to configure
an emulator to accurately model real networks and how to quantify the emulator’s
overall fidelity to a target (§3.5).

• We discuss new approaches to congestion control that are using the Pantheon as
a shared evaluation testbed, giving us encouragement that it will prove useful as a
community resource. Four are from research groups distinct from the present authors:
Copa [6] and Vivace [33] published at NSDI 2018, Aurora [53] published at ICML
2019, and FillP [64] to appear in SIGCOMM 2020 (§3.6).

• We also describe our own learning-based congestion control, Indigo, based on neural
networks that can be trained on a collection of the Pantheon’s emulators and in turn
achieve good performance over real Internet paths (§3.7).

3.2 Related work

Pantheon benefits from a decades-long body of related work in Internet measurement,
network emulation, transport protocols, and congestion-control schemes.

Tools for Internet measurement. Systems like PlanetLab [24], Emulab [123], and OR-
BIT [86] provide measurement nodes for researchers to test transport protocols and other
end-to-end applications. PlanetLab, which was in wide use from 2004–2012, at its peak
included hundreds of nodes, largely on well-provisioned (wired) academic networks around
the world. Emulab allows researchers to run experiments over configurable network emu-
lators and on Wi-Fi links within an office building.

While these systems are focused on allowing researchers to borrow nodes and run their
own tests, the Pantheon operates at a higher level of abstraction. Pantheon includes a single
community software package that researchers can contribute algorithms to. Anybody can
run any of the algorithms in this package, including over Emulab or any network path, but
Pantheon also hosts a common repository of test results (including raw packet traces) of
scripted comparative tests.
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Network emulation. Early congestion-control research relied heavily on simulation, e.g.,
through the ns-2 simulator [84]. When the Internet was simpler, largely wired, and devoid
of middleboxes, the community adopted recommendations for simulation parameters to
accurately capture the network’s behavior [39]. Shared experimental methods and metrics
helped congestion-control research flourish, giving a reproducibility that contributed to
TCP’s robustness and prevalence. However, as the Internet’s complexity grew, the limita-
tions of ns-2 became apparent, especially as application protocols became more complex
and simulating a TCP flow became insufficient. Numerous network emulators allow a real
application or protocol implementation to interact with a software emulator as if it is a real
network [20, 28, 38, 47, 48, 82, 92, 93, 120, 123].

These emulators provide increasing numbers of parameters and mechanisms to recreate
different network behaviors, such as traffic shapers, policers, queue disciplines, stochastic
i.i.d. or autocorrelated loss, reordering, bit errors, and MAC dynamics. However, properly
setting these parameters to emulate a particular target network remains an open problem.

One line of work has focused on improving emulator precision in terms of the level of
detail and fidelity at modeling small-scale effects (e.g., “Two aspects influence the accuracy
of an emulator: how detailed is the model of the system, and how closely the hardware
and software can reproduce the timing computed by the model” [20]). Pantheon takes a
different approach, instead focusing on accuracy in terms of how well an emulator recreates
the performance of a set of transport algorithms.

Congestion control. Internet congestion control has a deep literature. The original
DECBit [91] and Tahoe [52] algorithms responded to one-bit feedback from the network.
As wired network speeds increased, operating systems transitioned to hybrid schemes that
could also handle high bandwidth-delay product networks (very large window sizes), such
as Cubic [44] and Compound TCP [116]. All of these schemes rely on the concept of “TCP
friendliness” [40]. In this model, packet loss is predominantly due to queue drops and so
should be taken as a congestion signal. While early wireless LANs violated this assumption,
leading to wireless-specific congestion control schemes [9], wireless LANs today have high
enough link reliability that these schemes are not used today.

Since this seminal work, two classes of applications and networks have emerged that
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lead protocols to rely on a different congestion signal: delay. First, applications such as the
macOS update downloader and BitTorrent wish to use as much spare capacity as possible
without increasing the latency of standard TCP flows. LEDBAT, used by both systems,
uses delay as a measure of congestion, under the assumption that as long as there is a steady
send rate, filling queues does not improve throughput [104]. Second, mobile networks
provide more variable links than wired networks, along with deeper queues. This led to the
development of congestion control schemes, such as Sprout [125] and Verus [129], that use
delay as a signal to fully utilize a link without unnecessarily increasing delay. SCReAM
adds TCP’s self-clocking to LEDBAT to support conversational video over LTE [56].

Remy [124] and PCC [32] are different kinds of “learned” schemes. Remy uses an offline
optimizer that generates a decision tree to optimize a user-defined utility score, calculated at
the end of a network simulation. We evaluated a Remy-designed congestion control scheme
(the “100x” Tao algorithm [106] that was trained in simulation, labeled “Tao” on our plots)
as part of our experiments. While it performed well in emulation (Appendix D), it did not
yield consistently good performance across real-world paths.

PCC is based on an online hill-climbing algorithm that uses randomized trials to op-
timize a utility function balancing throughput and packet loss [32]. Since PCC learns its
behavior online, its optimization procedure accounts only for locally-observable phenom-
ena. Moreover, its hill-climbing algorithm can become trapped in local maxima far from
optimal (a phenomenon we observe on real-world links; §3.4).

In our current work (§3.7), we ask whether it is possible to quickly train an algorithm
from first principles to produce good global performance on real Internet paths.

3.3 Pantheon: design and implementation

This section describes the design and implementation of the Pantheon, a system that au-
tomatically measures the performance of many transport protocols and congestion-control
schemes across a diverse set of network paths. By allowing the community to repeatably
evaluate transport algorithms in scripted comparative tests across real-world network paths,
posted to a public archive of results, the Pantheon aims to help researchers develop and test
algorithms more rapidly and reproducibly.
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Below, we demonstrate several uses for Pantheon: comparing existing congestion-
control schemes on real-world networks (§3.4); calibrating network emulators that accu-
rately reproduce real-world performance (§3.5); and designing and testing new congestion-
control schemes (§3.6 and §3.7).

3.3.1 Design overview

Pantheon has three components: (1) a software repository containing pointers to transport-
protocol implementations, each wrapped to expose a common testing interface based on the
abstraction of a full-throttle flow; (2) testing infrastructure that runs transport protocols in
scripted scenarios, instruments the network to log when each packet was sent and received,
and allows flows to be initiated by nodes behind a network address translator (NAT); and
(3) a global observatory of network nodes, enabling measurements across a wide variety of
paths. We describe each in turn.

(1) A collection of transport algorithms, each exposing the same interface

To test each transport protocol or congestion-control scheme on equal footing, Pantheon
requires it to expose a common abstraction for testing: a full-throttle flow that runs until a
sender process is killed. The simplicity of this interface has allowed us (and a few external
contributors so far) to write simple wrappers for a variety of schemes and contribute them
to the Pantheon, but limits the kinds of evaluations the system can do.1

Figure 3.1 lists the currently supported schemes, plus the size (in lines of code) of a wrap-
per script to expose the required abstraction. For all but three schemes, no modification was
required to the existing implementation. The remaining three had a hard-coded MTU size
and required a small patch to adjust it for compatibility with our network instrumentation;
please see (2) below.

As an example, we describe the Pantheon’s wrapper to make WebRTC expose the
interface of a full-throttle flow. The Pantheon tests the Chromium implementation of

1For example, the interface allows measurements of combinations of long-running flows (with timed
events to start and stop a flow), but does not allow the caller to run a scheme until it has transferred exactly 𝑥
bytes. This means that the Pantheon cannot reliably measure the flow-completion time of a mix of small file
transfers.
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Label Scheme LoC
Copa Copa [6] 46
LEDBAT LEDBAT/`TP [104] (libutp) 48
PCC PCC† [32] 46
QUIC QUIC Cubic [63] (proto-quic) 119
SCReAM SCReAM [56] 541
Sprout Sprout† [125] 46
Tao RemyCC “100x” (2014) [106] 43
BBR TCP BBR [21] 52
Cubic TCP Cubic [44] (Linux default) 30
Vegas TCP Vegas [17] 50
Verus Verus† [129] 43
WebRTC WebRTC media [14] in Chromium 283
— Vivace [33] 37
— Aurora [53] 39
— FillP [64] 41
Indigo LSTM neural network 35

Table 3.1: The Pantheon’s transport schemes and the labels used for them in figures in
this dissertation. Shown are the number of lines of Python, C++, or JavaScript code in
each wrapper that implements the common abstraction. Schemes marked † are modified to
reduce MTU.

WebRTC media transfer [14] to retrieve and play a video file. The wrapper starts a
Chromium process for the sender and receiver, inside a virtual X frame buffer, and provides
a signaling server to mediate the initial connection. This comprises about 200 lines of
JavaScript.

Pantheon is designed to be easily extended; researchers can add a new scheme by
submitting a pull request that adds a submodule reference to their implementation and the
necessary wrapper script. Pantheon uses a continuous-integration system to verify that each
proposed scheme builds and runs in emulation.

(2) Instrumenting network paths

For each IP datagram sent by the scheme, Pantheon’s instrumentation tracks the size, time
sent, and (if applicable) time received. Pantheon allows either side (sender or receiver) to
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initiate the connection, even if one of them is behind a NAT, and prevents schemes from
communicating with nodes other than the sender and receiver. To achieve this, Pantheon
creates a virtual private network (VPN) between the endpoints, called a Pantheon-tunnel,
and runs all traffic over this VPN.

Pantheon-tunnel comprises software controlling a virtual network device (TUN) [119]
at each endpoint. The software captures all IP datagrams sent to the local TUN, assigns
each a unique identifier (UID), and logs the UID and a timestamp. It then encapsulates
the packet and its UID in a UDP datagram, which it transmits to the other endpoint via the
path under test. The receiving endpoint decapsulates, records the UID and arrival time, and
delivers the packet to its own Pantheon-tunnel TUN device.

This arrangement has two main advantages. First, UIDs make it possible to unambigu-
ously log information about every packet (e.g., even if packets are retransmitted or contain
identical payloads). Second, either network endpoint can be the sender or receiver of an
instrumented network flow over an established Pantheon-tunnel, even if it is behind a NAT
(as long as one endpoint has a routable IP address to establish the tunnel).

Pantheon-tunnel also has disadvantages. First, encapsulation costs 36 bytes (for the UID
and headers), reducing the MTU of the virtual interface compared to the path under test;
for schemes that assume a fixed MTU, Pantheon patches the scheme accordingly. Second,
because each endpoint records a timestamp to measure the send and receive time of each
datagram, accurate timing requires the endpoints’ clocks to be synchronized; endpoints use
NTP [85] for this purpose. Finally, Pantheon-tunnel makes all traffic appear to the network
as UDP, meaning it cannot measure the effect of a network’s discrimination based on the IP
protocol type.2

Evaluation of Pantheon-tunnel. To verify that Pantheon-tunnel does not substantially
alter the performance of transport protocols, we ran a calibration experiment to measure
the tunnel’s effect on the performance of three TCP schemes (Cubic, Vegas, and BBR).
We ran each scheme 50 times inside and outside the tunnel for 30 seconds each time,
between a colocation facility in India and the EC2 India datacenter, measuring the mean

2Large-scale measurements by Google [63] have found such discrimination, after deployment of the QUIC
UDP protocol, to be rare.
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Figure 3.1: Pantheon-tunnel does not substantially impact the performance of congestion-
control algorithms.

throughput and 95th-percentile per-packet one-way delay of each run.3 We ran a two-sample
Kolmogorov-Smirnov test for each pair of statistics (the 50 runs inside vs. outside the tunnel
for each scheme’s throughput and delay). No test found a statistically significant difference
below 𝑝 < 0.2 (Figure 3.1).

(3) A testbed of nodes on interesting networks

We deployed observation nodes in countries around the world, including cellular (LTE/UMTS)
networks in Stanford (USA), Guadalajara (Mexico), São Paulo (Brazil), Bogotá (Colombia),
New Delhi (India), and Beĳing (China), wired networks in all of the above locations as well
as London (U.K.), Iowa (U.S.), Tokyo (Japan), and Sydney (Australia), and a Wi-Fi mesh
network in Nepal. These nodes were provided by a commercial colocation facility (Mexico,
Brazil, Colombia, India), by volunteers (China and Nepal), or by Google Compute Engine
(U.K., U.S., Tokyo, Sydney).

3For BBR running outside the tunnel, we were only able to measure the average throughput (not delay).
Run natively, BBR’s performance relies on TCP segmentation offloading [23], which prevents a precise
measurement of per-packet delay without the tunnel’s encapsulation.
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We found that hiring a commercial colocation operator to maintain LTE service in
far-flung locations has been an economical and practical approach; the company maintains,
debugs, and “tops up” local cellular service in each location in a way that would otherwise
be impractical for a university research group. However, this approach limits us to available
colocation sites and ones where we receive volunteered nodes. We are currently bringing
up a volunteered node with cellular connectivity in Saudi Arabia and welcome further
contributions.

3.3.2 Operation and testing methods

The Pantheon frequently benchmarks its stable of congestion-control schemes over each
path to create an archive of real-world network observations. On each path, Pantheon
runs multiple benchmarks per week. Each benchmark follows a software-defined scripted
workload (e.g., a single flow for 30 seconds; or multiple flows of cross traffic, arriving and
departing at staggered times), and for each benchmark, Pantheon chooses a random ordering
of congestion-control schemes, then tests each scheme in round-robin fashion, repeating
until every scheme has been tested 10 times (or 3 for partly-cellular paths). This approach
mirrors the evaluation methods of prior academic work ( [32, 125, 129]).

During an experiment, both sides of a path repeatedly measure their clock offset to a
common NTP server and use these to calculate a corrected one-way delay of each packet.
After running an experiment, a node calculates summary statistics (e.g., mean throughput,
loss rate, and 95th-percentile one-way delay for each scheme) and uploads its logs (packet
traces, analyses, and plots) to AWS S3 and the Pantheon website (https://pantheon.
stanford.edu).

3.4 Findings

The Pantheon has collected and published measurements of a dozen protocols taken over the
course of more than a year. In this section, we give a high-level overview of some key findings
in this data, focusing on the implications for research and experimental methodology. We
examine comparative performance between protocols rather than the detailed behavior of
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(a) AWS Brazil to Colombia (cellular), 1 flow, 3
trials. P1392.
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(b) Stanford to AWS California (cellular), 1 flow,
3 trials. P950.
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(c) AWS Brazil to Colombia (wired), 1 flow, 10
trials. P1271.
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(d) Colombia to AWS Brazil (cellular), 1 flow, 3
trials. P1391.
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(e) Stanford to AWS California (wired), 3 flows,
10 trials. P1238.
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(f) GCE Tokyo to GCE Sydney (wired), 3 flows,
10 trials. P1442.
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(g) AWS Brazil to Colombia (cellular), 1 flow, 3
trials. 2 days after Figure 3.2a (shown in open
dots). P1473.
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(h) AWS Brazil to Colombia (cellular), 3 flows, 3
trials. P1405.

Figure 3.2: Compared with Figure 3.2a, scheme performance varies across the type of
network path (Figure 3.2c), number of flows (Figure 3.2h), time (Figure 3.2g), data flow
direction (Figure 3.2d), and location (Figure 3.2b). Figure 3.2e and 3.2f show that the
variation is not limited to just cellular paths. The shaded ellipse around a scheme’s dot
represents the 1-𝜎 variation across runs. Given a measurement ID, e.g. P123, the full result
can be found at https://pantheon.stanford.edu/result/123/.

particular protocols, because comparative analyses provide insight into which protocol end
hosts should run in a particular setting.

To ground our findings in examples from concrete data, we select one particular path:
AWS Brazil to Colombia. This path represents the performance a device in Colombia would
see downloading data from properly geo-replicated applications running in AWS (Brazil is
the closest site).

Finding 1: Which protocol performs best varies by path. Figure 3.2a shows the
throughput and delay of 12 transport protocols from AWS Brazil to a server in Colom-
bia, with an LTE modem from a local carrier (Claro).4 Figure 3.2b shows the throughput
and delay for the same protocols from a node at Stanford University with a T-Mobile LTE
modem, to a node in AWS California. The observed performance varies significantly. In
Brazil-Colombia, PCC is within 80% of the best observed throughput (QUIC) but with

4All results in this dissertation and supporting raw data can be found in the Pantheon archive; e.g. the
experiment indicated as P123 can be found at https://pantheon.stanford.edu/result/123/.
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delay 20 times higher than the lowest (SCReAM). In contrast, for Stanford-California, PCC
has only 52% of the best observed throughput (Cubic) and the lowest delay. The Sprout
scheme, developed by one of the present authors, was designed for cellular networks in the
U.S. and performs well in that setting (Figure 3.2b), but poorly on other paths.

These differences are not only due to long haul paths or geographic distance. Figure 3.2c
shows the performance of the transport protocols from AWS Brazil to a wired device in
Colombia. Performance is completely different. Delays, rather than varying by orders of
magnitude, differ by at most 32%. At the same time, some protocols are strictly better:
QUIC (Cubic) and (TCP) Cubic have both higher throughput and lower delay than BBR
and Verus.

Differences are not limited to paths with cellular links. Figure 3.2e shows performance
between Stanford and AWS California using high-bandwidth wired links and Figure 3.2f
shows performance between the Google Tokyo and Sydney datacenters. While in both cases
PCC shows high throughput and delay, in the AWS case BBR is better in throughput while
between Google data centers it provides 34% less throughput. Furthermore, LEDBAT
performs reasonably well on AWS, but has extremely low throughput between Google
datacenters.

This suggests that evaluating performance on a small selection (or, in the worst case, just
one) of paths can lead to misleadingly positive results, because they are not generalizable
to a wide range of paths.

Finding 2: Which protocol performs best varies by path direction. Figure 3.2d shows
the performance of the opposite direction of the path, from the same device with cel-
lular connection in Colombia to AWS Brazil. This configuration captures the observed
performance of uploading a photo or streaming video through a relay.

In the Brazil to Colombia direction, QUIC strictly dominates Vegas, providing both
higher throughput and lower delay. In the opposite direction, however, the tradeoff is less
clear: Vegas provides slightly lower throughput with a significant (factor of 9) decrease
in delay. Similarly, in the Brazil to Colombia direction, WebRTC provides about half
the throughput of LEDBAT while also halving delay; in the Colombia to Brazil direction,
WebRTC is strictly worse, providing one third the throughput while quadrupling delay.
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This indicates that evaluations of network transport protocols need to explicitly measure
both directions of a path. On the plus side, a single path can provide two different sets of
conditions when considering whether results generalize.

Finding 3: Protocol performance varies in time and only slightly based on competing
flows. Figure 3.2g shows the Brazil-Colombia path measured twice, separated by two days
(the first measurement shown in open dots is the same as in Figure 3.2a). Most protocols see
a strict degradation of performance in the second measurement, exhibiting lower throughput
and higher delay. Cubic and PCC, once clearly distinguishable, merge to have equivalent
performance. More interestingly, the performance of Vegas has 23% lower throughput, but
cuts delay by more than a factor of 2.

Finally, Figure 3.2h shows performance on the Brazil-Colombia path when 3 flows
compete. Unlike in Figure 3.2a, PCC and Cubic dominate Vegas, and many protocols see
similar throughput but at greatly increased latency (perhaps due to larger queue occupancy
along the path).

This indicates that evaluations of network transport protocols need to not only measure
a variety of paths, but also spread those measurements out in time. Furthermore, if one
protocol is measured again, all of them need to be measured again for a fair comparison, as
conditions may have changed. Cross traffic (competing flows) is an important consideration,
but empirically has only a modest effect on relative performance. We do find that schemes
that diverge significantly from traditional congestion control (e.g., PCC) exhibit poor fairness
in some settings; in a set of experiments between Tokyo and Sydney (P1442), we observed
the throughput ratios of three PCC flows to be 32:4:1. This seems to contradict fairness
findings in the PCC paper and emphasizes the need for a shared evaluation platform across
diverse paths.

3.5 Calibrated emulators

The results in Section 3.4 show that transport performance varies significantly over many
characteristics, including time. This produces a challenge for protocol development and the
ability of researchers to reproduce each others’ results. One time-honored way to achieve
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controlled, reproducible results, at the cost of some realism, is to measure protocols in
simulation or emulation [39] instead of the wild Internet, using tools like Dummynet [20,93],
NetEm [48], Mininet [47], or Mahimahi [82].

These tools each provide a number of parameters and mechanisms to recreate different
network behaviors, and there is a traditional view in computer networking that the more fine-
grained and detailed an emulator, the better. The choice of parameter values to faithfully
emulate a particular target network remains an open problem.

In this dissertation, we propose a new figure of merit for network emulators: the degree
to which an emulator can be substituted for the real network path in a full system, including
the endpoint algorithm, without altering the system’s overall performance. In particular, we
define the emulator’s accuracy as the average difference of the throughput and of the delay
of a set of transport algorithms run over the emulator, compared with the same statistics
from the real network path that is the emulator’s target. The broader and more diverse the
set of transport algorithms, the better characterized the emulator’s accuracy will be: each
new algorithm serves as a novel probe that could put the network into an edge case or
unusual state that exercises the emulator and finds a mismatch.

In contrast to some conventional wisdom, we do not think that more-detailed network
models are necessarily preferable. Our view is that this is an empirical question, and that
more highly-parameterized network models create a risk of overfitting—but may be justified
if lower-parameter models cannot achieve sufficient accuracy.

3.5.1 Emulator characteristics

We found that a five-parameter network model is sufficient to produce emulators that
approximate a diverse variety of real paths, matching the throughput and delay of a range of
algorithms to within 17% on average. The resulting calibrated emulators allow researchers
to test experimental new schemes—thousands of parallel variants if necessary—in emulated
environments that stand a good chance of predicting future real-world behavior.5

The five parameters are:
5In a leave-one-out cross-validation experiment, we confirmed that emulators trained to match the perfor-

mance of 𝑛− 1 transport algorithms accurately predicted the unseen scheme’s performance within about 20%
(results not shown).
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1. a bottleneck link rate,

2. a constant propagation delay,

3. a DropTail threshold for the sender’s queue,

4. a stochastic loss rate (per-packet, i.i.d.), and

5. a bit that selects whether the link runs isochronously (all interarrival times equal), or
with packet deliveries governed by a memoryless Poisson point process, characteristic
of the observed behavior of some LTE networks [125].

To build emulators using these parameters, the Pantheon uses Mahimahi container-based
network emulators [82]. In brief: Mahimahi gives the sender and receiver each its own
isolated Linux network namespace, or container, on one host. An emulator is defined by a
chain of nested elements, each one modeling a specific network effect: e.g., an mm-loss
container randomly drops packets in the outgoing or incoming direction at a specified rate.

3.5.2 Automatically calibrating emulators to match a network path

Given a set of results over a particular network path, Pantheon can generate an emulator
that replicates the same results in about two hours, using an automated parameter-search
process that we now describe.

To find an appropriate combination of emulator parameters, Pantheon searches the space
using a non-linear optimization process that aims to find the optimal value for a vector 𝑥,
which represents the <rate, propagation delay, queue size, loss rate> for the emulator.6

The optimization derives a replication error for each set of emulator parameters, 𝑓 (𝑥),
which is defined as the average of the percentage changes between the real and emulated
mean throughput, and the real and emulated mean 95th-percentile delay, across each of
the set of reference transport algorithms. To minimize 𝑓 (𝑥), nonlinear optimization is
necessary because neither the mathematical expression nor the derivative of 𝑓 (𝑥) is known.
In addition, for both emulated and real world network paths, 𝑓 (𝑥) is non-deterministic and
noisy.

6The optimization is run twice, to choose between a constant rate or a Poisson delivery process.
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The Pantheon uses Bayesian optimization [74], a standard method designed for optimiz-
ing the output of a noisy function when observations are expensive to obtain and derivatives
are not available.7 The method starts with the assumption that the objective function, 𝑓 (𝑥),
is drawn from a broad prior (Gaussian is a standard choice and the one we use). Each sample
(i.e., calculation of the emulator replication error for a given set of emulator parameters
𝑥) updates the posterior distribution for 𝑓 (𝑥). Bayesian optimization uses an acquisition
function to guide the algorithm’s search of the input space to the next value 𝑥. We use the
Spearmint [107] Bayesian-optimization toolkit, which uses “expected improvement” as its
acquisition function. This function aims to maximize the expected improvement over the
current best value [74].

3.5.3 Emulation results

We trained emulators that model six of Pantheon’s paths, each for about 2 hours on 30
EC2 machines with 4 vCPUs each. Figure 3.3 shows per-scheme calibration results for
two representative network paths, a wireless device in Nepal and a wired device in Mexico.
Filled dots represent the measured mean performance of the scheme on the real network path,
while the open dot represents the performance on the corresponding calibrated emulator. A
closer dot means the emulator is better at replicating that scheme’s performance.

We observe that the emulators roughly preserve the relative order of the mean per-
formance of the schemes on each path. Table 3.2 shows mean error in replicating the
throughput and delay performance of all of Pantheon’s congestion-control schemes by a
series of emulators. To ensure each parameter is necessary, we measured the benefits of
adding delay, queue size, and loss information to a base emulator that uses a constant rate,
in replicating the China wired device path. For the cellular device path we measured the
benefit of using a Poisson based link rate rather than a constant rate. As shown in Table 3.3,
each added parameter improves the emulator’s fidelity.

Pantheon includes several calibrated emulators, and regularly runs the transport algo-
rithms in single- and multi-flow scenarios over each of the emulators and publishes the

7Each evaluation of 𝑓 (𝑥) involves running all of Pantheon’s congestion-control schemes in a scripted
30-second scenario, three times, across the emulated path. This is done in parallel, so each evaluation of 𝑓 (𝑥)
takes about 30 seconds of wall-clock time.
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(a) Nepal to AWS India (wireless), 1 flow, 10 trials. Mean replication error: 19.1%. P188.
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(b) AWS California to Mexico (wired), 3 flows, 10 trials. Mean replication error: 14.4%. P1237.

Figure 3.3: Examples of per-scheme calibrated emulator errors. The filled dots represent
real results over each network path; the open dots represent the corresponding result over
the emulator that best replicates all of the results. Emulators for all-wired paths give better
fidelity than emulators for partly-wireless paths (§3.5.3).
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Path Error (%)
Nepal to AWS India (Wi-Fi, 1 flow, P188) 19.1
AWS Brazil to Colombia (cellular, 1 flow, P339) 13.0
Mexico to AWS California (cellular, 1 flow, P196) 25.1
AWS Korea to China (wired, 1 flow, P361) 17.7
India to AWS India (wired, 1 flow, P251) 15.6
AWS California to Mexico (wired, 1 flow, P353) 12.7
AWS California to Mexico (wired, 3 flows, P1237) 14.4

Table 3.2: Replication error of calibrated emulators on six paths with a single flow, and one
path with three flows of staggered cross traffic.

Path Feature change Error (%)
China wired link rate only 211.8

add delay 211.8 → 189.7
add buffer size 189.7 → 32.3
add stochastic loss 32.3 → 17.7

Colombia cellular constant → Poisson 23.7 → 13.0

Table 3.3: Each of the emulator’s five parameters is helpful in reducing replication error.
For the China wired path, we started with a single parameter and added the other three
features one by one, in the order of their contribution. The Colombia cellular path required
jitter (Poisson deliveries) to achieve good accuracy.

results in its public archive. Researchers are also able to run the calibrated emulators
locally.

In addition, Pantheon includes, and regularly evaluates schemes over, a set of “patho-
logical” emulators suggested by colleagues at Google. These model extreme network
behaviors seen in the deployment of the BBR scheme: very small buffer sizes, severe ACK
aggregation, and token-bucket policers.

Overall, our intention is that Pantheon will contain a sufficient library of well-understood
network emulators so that researchers can make appreciable progress evaluating schemes
(perhaps thousands of variants at once) in emulation—with some hope that there will be
fewer surprises when a scheme is evaluated over the real Internet.
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3.6 Pantheon use cases

We envision Pantheon as a common evaluation platform and an aid to the development of
new transport protocols and congestion-control schemes. In this section, we describe the
experiences that other research groups have had using Pantheon to assist their efforts.

Case 1. Vivace: validating a new scheme in the real world. Dong et al. [33] describe a
new congestion-control scheme called Vivace, the successor to PCC [32]. They contributed
three variants of the scheme to Pantheon in order to evaluate and tune Vivace’s performance,
by examining Pantheon’s packet traces and analyses of Vivace in comparison with other
schemes across an array of real-world paths. This is consistent with Pantheon’s goal of
being a resource for the research community (§1).

Case 2. Copa and FillP: iterative design with measurements. Arun and Balakrishnan [6]
describe another new scheme, Copa, which optimizes an objective function via congestion
window and sending rate adjustments. In contrast to Vivace, which was deployed on Pan-
theon largely as a completed design, Copa used Pantheon as an integral part of the design
process: the authors deployed a series of six prototypes, using Pantheon’s measurements
to inform each iteration. Li et al. [64] improved wireless transport performance with FillP
and used Pantheon, especially the wireless paths, in the same way as Copa did. They
demonstrate another use of Pantheon, automatically deploying and testing prototypes on
the real Internet, and gathering in vivo performance data.

Case 3. Aurora: evaluating a reinforcement learning scheme. Jay et al. [53] ap-
ply reinforcement learning to generate a congestion-control scheme called Aurora. They
added the scheme to Pantheon’s reference set and performed an extensive evaluation using
Pantheon’s network emulators.

3.7 Indigo: extracting an algorithm from data

As an extreme example of data-driven design, we present Indigo, a machine-learned
congestion-control scheme whose design we extract from data gathered by Pantheon.
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Using machine learning to train a congestion-control scheme for the real world is
challenging. The main reason is that it is impractical to learn directly from the Internet:
machine-learning algorithms often require thousands of iterations and hours to weeks of
training time, meaning that paths evolve in time (§3.4) more quickly than the learning
algorithm can converge. Pantheon’s calibrated emulators (§3.5) provide an alternative:
they are reproducible, can be instantiated many times in parallel, and are designed to
replicate the behavior of congestion-control schemes. Thus, our high-level strategy is to
train Indigo using emulators, then evaluate it in the real world using Pantheon.

Indigo is one example of what we believe to be a novel family of data-driven algorithms
enabled by Pantheon. Specifically, Pantheon facilitates realistic offline training and testing
by providing a communal benchmark, evolving dataset, and calibrated emulators to allow
approximately realistic offline training and testing.

3.7.1 Overview of Indigo

At its core, Indigo does two things: it observes the network state, and it takes an action to
adjust its congestion window, i.e., the allowable number of in-flight packets. Observations
occur each time an ACK is received, and their effect is to update Indigo’s internal state,
consisting of:

1. An exponentially-weighted moving average (EWMA) of the queuing delay, measured
by the difference between the current RTT and the minimum RTT observed during
the current connection.

2. An EWMA of the sending rate, which we define as the number of bytes sent since
the last ACK’ed packet was sent, divided by the RTT.

3. An EWMA of the receiving rate, which we define as the number of bytes received since
the ACK preceding the transmission of the most recently ACK’ed packet, divided by
the corresponding duration (similar to and inspired by TCP BBR’s delivery rate [21]).

4. The current congestion window size.

5. The previous action taken.
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Indigo adjusts its congestion window no more frequently than once every 10 ms, with an
action from ÷2, −10, +0, +10, ×2 relative to the current congestion window (so ×2 doubles
the window).

Indigo stores the mapping from states to actions in a Long Short-Term Memory (LSTM)
recurrent neural network [50] with 1 layer of 32 hidden units. It uses a recurrent neural
network because this architecture is useful in solving POMDPs [57] (a kind of randomized
decision problems under partial information); congestion control can be modeled as such
a problem [124]. Indigo learns the mapping through a training phase (described below);
once trained and deployed, this mapping is fixed.

We note that there may be better parameter choices: number of hidden units, action
space, state contents, etc. We have found that the above choices already achieve good
performance; further improvements are future work. As one step toward validating our
choices, we trained and tested several versions of Indigo with a range of hidden units, from
1 to 256, on an emulated network; choices between 16 and 128 yielded good performance.

3.7.2 Indigo’s training phase

Indigo uses imitation learning [13, 97] to train its neural network. At a high level, this
happens in two steps: first, we generate one or more congestion-control oracles, idealized
algorithms that perfectly map states to correct actions, corresponding to links on which
Indigo is to be trained. Then we apply a standard imitation learning algorithm that uses
these oracles to generate training data.

Of course, no oracle exists for real-world paths. Instead, we generate oracles corre-
sponding to emulated paths; this is possible because Pantheon’s emulators (§3.5) have few
parameters. By the definition of an oracle, if we know the ideal congestion window for a
given link, we have the oracle for the link: for any state, output whichever action results in
a congestion window closest to the ideal value.

A key insight is that for emulated links, we can very closely approximate the ideal
congestion window. For simple links with a fixed bandwidth and minimum one-way delay,
the ideal window is given by the link’s bandwidth-delay product (BDP) per flow. For
calibrated emulators, the ideal window size is further from the BDP. This is because our
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calibrated emulators also specify a DropTail queue buffer size, per-packet loss rate, etc.
Since these variables affect the number of packets in flight at any given time, they also affect
the ideal window size. Therefore, we compute the BDP and then search near this value in
emulation to find the best fixed congestion window size.

After generating congestion-control oracles corresponding to each training link, we use
a distributed, synchronous version of a state-of-the-art imitation learning algorithm called
DAgger to train the neural network [97]. The system consists of a server and many workers.
At a high level, the workers collect (network link state, ideal window size) pairs, which they
send to the server; the server uses these pairs to train a neural net. To gather the pairs, each
worker contains:

1. a local copy of the neural network, updated periodically;

2. a sender and receiver in an emulated network link created using Mahimahi [82];

3. an oracle for the above network link; and

4. a buffer for storing (network link state, ideal window size) pairs.

The worker simulates a flow between the sender and the receiver. After each ACK, the
sender modifies the congestion window by sampling an action from the local neural network.

After each such action, the worker gathers one data point by querying the oracle on the
new state of the network link; it records this state and oracle’s answer in its buffer. Once the
worker has gathered 1000 pairs, it sends the server the contents of its buffer and receives
an updated copy of the neural network. The server uses pairs gathered from the workers to
run a typical supervised learning routine [50], which updates the neural network’s weights.
The server and workers repeat their interaction, iteratively improving the neural network;
training is complete when the neural network’s outputs converge to the oracle’s outputs.

Put another way, the workers observe an active link in order to build a set of (state,
action) pairs, and they use a snapshot of the Indigo’s neural network in training as the link’s
congestion-control scheme. The server aggregates all of the workers’ pairs and uses them
to train new versions of the neural network.
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3.7.3 Indigo’s performance

In this section, we compare Indigo’s performance with that of other congestion-control
schemes, and we evaluate the effect of Pantheon’s calibrated emulators on performance,
versus only training on fixed-bandwidth, fixed-delay emulators.

Indigo in simulation. We evaluate Indigo on 210 synthetic networks, consisting of all
combinations of (5, 10, 20, 30, . . . , 200 Mbps) link rate and (10, 20, . . . , 100 ms) min
one-way delay. All synthetic networks have infinite queue depth and no loss. For each, we
ran Indigo and the Pantheon’s schemes (§3.3) for 30 seconds.

Out of the 210 tests, Indigo ranks first 175 times (83%) and in the top two 206 times
(98%). Indigo’s performance is near best in both throughput and delay, and is the best in
Kleinrock’s power metric [58]. In Appendix D we give more detail.

We trained Indigo on 24 synthetic emulators uncorrelated to Pantheon’s real network
paths, and on the calibrated emulators (§3.5). The synthetic emulators comprise all combi-
nations of (5, 10, 20, 50, 100, and 200 Mbps) link rate and (10, 20, 40, 80 ms) minimum
one-way delay, with infinite buffers and no loss.

Indigo on Pantheon. We find that Indigo consistently achieves good performance. Fig-
ure 3.4 compares Indigo to other schemes in single flow on two wired paths. In both cases,
Indigo is at the throughput/delay tradeoff frontier.

Figure 3.5 shows Indigo’s performance in the multi-flow case. Figure 3.5a shows the
performance of all of Pantheon’s congestion-control schemes on a wired path from India to
AWS India; Indigo is once again on the throughput/delay tradeoff frontier. Figure 3.5b is a
time-domain plot of one trial from Figure 3.5a, suggesting that Indigo shares fairly, at least
in some cases.

Benefit of calibrated emulators. Figures 3.4 and 3.5 also depict a variant of Indigo,
“Indigo w/o calib,” that is only trained on the synthetic emulators, but not the calibrated
emulators. The version trained on calibrated emulators is always as least as good or better.
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(a) Mexico to AWS California, 10 trials. P1272.
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(b) AWS Brazil to Colombia, 10 trials. P1439.

Figure 3.4: Real wired paths, single flow. Indigo’s performance is at the throughput/delay
tradeoff frontier. Indigo without calibrated emulators (“Indigo w/o calib”) gives worse
performance.
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(a) India to AWS India, 10 trials. P1476.

(b) Time-domain three-flow test. One trial in Figure 3.5a.

Figure 3.5: Real wired paths, multiple flows. Figure 3.5a shows the performance of all
congestion-control schemes on multi-flow case. Figure 3.5b shows throughput vs. time
for a three-flow run in Figure 3.5a starting 10 seconds apart. Indigo shares the bandwidth
fairly.
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3.8 Discussion, limitations, and future work

Improving Pantheon. Pantheon would be more useful if it collected more data about
congestion-control schemes. For instance, Pantheon currently gathers data only from a
handful of nodes—vastly smaller than the evaluations large-scale operators can perform on
even a small fraction of a billion-user population.

Moreover, geographic locality does not guarantee network path similarity: two nodes in
the same city can have dramatically different network connections. Pantheon also only tests
congestion-control schemes at full throttle; other traffic patterns (e.g., Web-like workloads)
may provide researchers with valuable information (e.g., how their scheme affects page-load
times).

Finally, Pantheon currently measures the interaction between multiple flows of cross-
traffic governed by the same scheme, but we are working to make it measure interactions
between different schemes. These measurements will help evaluate fairness in the real
world.

Improving the calibrated emulators. Our current emulators replicate throughput and
delay metrics only within 17% accuracy on average. An open question is whether we
can improve emulator fidelity—especially on cellular paths—without risk of overfitting.
Considering metrics other than 95th-percentile delay and mean throughput may be one path
forward. Adding more schemes to Pantheon could also help—or it might reveal that the
current set of emulator parameters, which we have empirically determined, is insufficient
for some schemes.

Indigo. We have presented a case study on Indigo, a data-driven approach to congestion-
control design that crucially relies on Pantheon’s family of emulators. Indigo’s trained
model is complex and may have unknown failure modes, but the results to date demonstrate
how Pantheon can enable new approaches to protocol design.

Indigo produces encouraging results, but there is more evaluation to explore. For
example: other training algorithms (e.g., reinforcement learning) may allow for online
or hybrid online-offline learning; different neural network designs may reduce costs; and
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additional inputs (e.g., current delivery rate, as in BBR [21]) or control mechanisms (e.g.,
packet pacing) may give better performance.

Addressing some shortcomings of Indigo’s design should improve its performance.
For example, with Indigo’s current design, oracles do not adequately capture links whose
behaviors change quickly. Finally, training Indigo on more than 30 links should also improve
performance.
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Chapter 4

Discussion

As much as we welcome researchers to use Puffer and Pantheon for training and validating
novel ML algorithms, we also urge caution in applying ML to networking research. De-
ploying ML algorithms on real systems can be much more challenging and time-consuming
than presenting “proof of concept” as related work commonly does. In this chapter, we
describe the pitfalls and lessons from our own experience and discuss promising directions
forward. We argue that the practicality of ML algorithms for networking research deserves
more research study.

4.1 Sequential decisions vs. isolated decisions

Although this dissertation has focused on sequential decision problems on the Internet,
many other algorithms running on real networks only make isolated decisions. For in-
stance, network operators deploy traffic classifiers to guarantee Quality of Service (QoS)
requirements, detect anomaly and intrusion, and allocate or provision resources more ef-
ficiently. The classification decisions made by these algorithms are isolated—a decision
classifying a group of network packets into one of the traffic classes of interest does not
affect later traffic or decisions of its own1.

1A traffic classifier may decide to drop all the subsequent suspicious packets once it detects an anomalous
event, so strictly speaking, its decisions might not be isolated in rare circumstances.
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Network researchers have proposed ML approaches to traffic classification, based on su-
pervised learning [45,100] and unsupervised learning [15,67]. Other problems of “isolated
decision making,” such as network fault management [46,62], have also seen an increase in
ML solutions.

We believe algorithms making isolated decisions on networks are more hospitable to ML
because the network only serves as another data source for ML and is not “controlled” by ML.
Taking traffic classification as an example: traffic classifiers sniff packets on the network
and do not usually inject new packets or affect the network behavior. Other real-world
requirements are also more flexible, e.g., ML-based traffic classifiers do not necessarily
need to achieve robust performance since their results, such as a suspected intrusion,
can be confirmed by existing hand-crafted classifiers or even human engineers. Traffic
classification can tolerate a higher latency as well, giving more time to ML algorithms to
generate results without delaying production services. Besides, the relevant ML techniques
(supervised learning and unsupervised learning) have been extensively studied and well
understood by the ML community, reducing surprises arising from deployment.

Nevertheless, we still urge a thorough evaluation of these ML algorithms in the real
world. Evaluation using recorded network traffic or network simulators cannot capture the
complexities of real systems (§2.4 and §3.4).

4.2 RL for networking research

We discussed the challenges of real-world RL in Section 1.1.2, and unfortunately, we
observed every single of them on Puffer and Pantheon. For example, our best effort of
faithfully simulating a given network path still yields a considerable error (17% on average;
§3.5). A congestion-control algorithm equipped with neural networks must still run at line
speed and avoid packet flooding in the worst case, which is arguably more critical than good
performance on average. Reliable measurement of video-streaming algorithms requires
years of data due to the heavy-tailed behavior of the Internet (§2.2.4), whereas collecting
data from real users is very costly.

Our experience finds that building real-world systems helps understand and address the
practical challenges better than inventing algorithms “in the lab.” However, existing work
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often heavily relies on network simulators for evaluation and conducts small-scale field
experiments, if any, in the last stage of algorithm design.

It is a common pitfall because, first, we have shown that simulation results are not indica-
tive of real-world performance (§2.4 and §3.4). In addition, we underscore that replaying
pre-recorded throughput traces in a network simulator does not make simulation results
indicative either. Faithfully replicating real networks is more than replaying throughput
traces and still beyond our current capabilities [41, 42, 87]. Future work needs to improve
calibrated emulators (§3.5) or invent other techniques to better model real networks.

Second, practical requirements will affect and often constrain the design space of algo-
rithms. Therefore, we suggest including real-world evaluations in the loop to drive each
iteration. Last-minute field experiments or no experiments on real systems at all might ren-
der previous efforts in vain or the resulting algorithm impractical. For example, we suspect
that directly applying model-free RL to designing ABR algorithms for the real Internet may
not be feasible yet (§2.4.3). An early experiment on any real video-streaming platform,
such as Puffer, would have given a second thought to this learning method. By contrast, we
restricted our use of RL in both problems to model-based RL and imitation learning, which
use supervised learning as part of their approaches and have desirable properties, such as
robust performance, stable training, and sample efficiency [29, 49]. They are grounded on
control theory that has a long history for addressing practical problems and remain active
areas of research today.

Finally, “promising” simulation results can not only mislead the algorithm designer
but also give false hope to other researchers, encouraging the eager adoption of RL and
often deep RL. However, deep RL is infamous for overfitting, so readers should be more
cautious when interpreting the results if the algorithm is trained and tested in the same
network simulator. We should assume that simulation results do not represent real-world
performance unless explicit evidence is provided.

4.2.1 Generalizing RL algorithms to real networks

Besides the testing performance, we also want to generalize the training performance of
RL—either in simulation or real life—to the actual deployment environment. Depending
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on the location of training, we discuss three approaches below.

1. Training in network simulators. Many RL algorithms require training in network sim-
ulators for various reasons: 1) collecting training data on real networks can be expensive
or intrusive to existing services; 2) training in real life can be too slow and impractical
compared with instantiating as many simulators as needed; 3) the exploratory learning
phase might violate safety requirements of real systems and prevent useful communi-
cation of other network applications; 4) the learning itself might require information
available only within network simulators (e.g., Indigo).

For these RL algorithms training in simulated environments, it is well-known that the
discrepancy between simulation and reality creates hurdles for generalizability [16].
Therefore, we proposed calibrated emulators (§3.5) to bridge the gap and demonstrated
their usefulness for generalizing Indigo’s performance (§3.7.3). We discussed the future
work of improving calibrated emulators in Section 3.8, and believe that further reducing
the simulation-to-reality gap deserves more effort from the research community.

2. Training on real networks. Besides the discussed challenges of training RL in the real
world, real networks—at least the Internet—also exhibit extremely noisy behavior, as
we observed on Puffer (§2.2.4). The substantial system noise limits or even prevents
the trial-and-error paradigm of (model-free) RL since the algorithm can no longer vary
an action slightly and detect a reliable change in the resulting reward. Therefore, we
suspect training RL algorithms directly on the Internet is not feasible yet (§2.4.3).

Recently, researchers have proposed RL algorithms that are robust to system noise,
including noisy rewards [88, 95, 117], but these algorithms remain to be applied and
verified on the Internet. Alternatively, future work can investigate and better understand
the heavy-tailed Internet behavior, so we can adjust RL algorithms to this particular
environment without the need of achieving general robustness.

3. Training on log data from real systems. When good simulators are not available, and
training on real networks is not feasible, RL algorithms can be trained offline on batches
of log data from real systems without interaction with the environment. This is known as
offline RL or batch RL [61, 101]. Fugu adopts offline (model-based) RL, but we further
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emphasize that the log data should come from the actual deployment environment so as
to ensure better generalization.

Training on log data is suitable for the systems that cannot afford service interruption
or performance degradation in the algorithm’s learning phase, but it also excludes many
powerful trial-and-error RL techniques that require interaction with the environment.
Future work needs to pay more attention to RL algorithms that learn from log data, such
as model-based RL and imitation learning, to supplement model-free RL. We can also
study how to adapt real systems for training these RL algorithms offline.

4.2.2 Other promising directions

In addition to the future work mentioned above, we believe the guarantee of worst-case
performance and interpretability of algorithms are also promising directions forward.

Production systems are often interested in more than the average performance of an
algorithm; they are also concerned with the worst-case performance. This criterion is
different from the optimization goal of long-term average return in most RL research.
For instance, if a congestion-control algorithm mostly works well but can overwhelm the
network with packets even occasionally, it may cause congestion collapse [79] and bring
down other services running on the network. Recent research in RL has proposed algorithms
to optimize worst-case value functions as the objective [68,115], and we are eager to know
if these algorithms are effective on real networks and if they may accelerate the adoption of
RL.

When the algorithm causes service degradation and even outages (e.g., due to the absence
of worst-case performance guarantee), we want to debug its behavior and avoid similar issues
in the future. However, neural-network-based algorithms are often not interpretable, which
is an underestimated reason that production systems are reluctant to deploy them. The
interpretability of RL algorithms might also partly explain why simple algorithms, such as
BBA [51] and TCP Cubic [44], are still widely used on the Internet. Interpretable machine
learning has seen an increasing interest in recent years [34,76], and we believe real networks
would welcome more explainable ML algorithms in the future.

77



Appendices

78



A
R

an
do

m
iz

ed
tr

ia
lfl

ow
di

ag
ra

m
31

4,
57

7 
se

ss
io

ns
 u

nd
er

w
en

t r
an

do
m

iz
at

io
n

1,
90

4,
31

6 
st

re
am

s
69

,0
17

 u
ni

qu
e 

IP
s

17
.2

 c
lie

nt
-y

ea
rs

 o
f d

at
a

69
,9

41
 s

es
si

on
s 

w
er

e 
ex

cl
ud

ed
43

7,
26

6 
st

re
am

s
4.

0 
cl

ie
nt

-y
ea

rs
 o

f d
at

a

◦ 1
02

,9
94

 s
tre

am
s 

w
er

e 
as

si
gn

ed
 C

U
BI

C
◦ 

33
4,

27
2 

st
re

am
s 

w
er

e 
as

si
gn

ed
 e

xp
er

im
en

ta
l a

lg
or

ith
m

s 
fo

r 
◦ 

po
rti

on
s 

of
 th

e 
st

ud
y 

du
ra

tio
n

49
,9

60
 s

es
si

on
s 

w
er

e 
as

si
gn

ed
Fu

gu
30

3,
25

0 
st

re
am

s

49
,0

84
 s

es
si

on
s 

w
er

e 
as

si
gn

ed
M

PC
-H

M
29

4,
54

1 
st

re
am

s

48
,5

19
 s

es
si

on
s 

w
er

e 
as

si
gn

ed
R

ob
us

tM
PC

-H
M

29
3,

32
3 

st
re

am
s

47
,8

19
 s

es
si

on
s 

w
er

e 
as

si
gn

ed
Pe

ns
ie

ve
28

3,
68

3 
st

re
am

s

49
,2

54
 s

es
si

on
s 

w
er

e 
as

si
gn

ed
BB

A
29

2,
25

3 
st

re
am

s

17
0,

62
9 

st
re

am
s 

w
er

e 
ex

cl
ud

ed

◦ 3
85

 d
id

 n
ot

 b
eg

in
 p

la
yi

ng
◦ 1

70
,1

80
 h

ad
 w

at
ch

 ti
m

e 
le

ss
 th

an
 4

s
◦ 6

4 
st

al
le

d 
fro

m
 a

 s
lo

w
 v

id
eo

 d
ec

od
er

16
6,

18
6 

st
re

am
s 

w
er

e 
ex

cl
ud

ed

◦ 5
27

 d
id

 n
ot

 b
eg

in
 p

la
yi

ng
◦ 1

65
,6

03
 h

ad
 w

at
ch

 ti
m

e 
le

ss
 th

an
 4

s
◦ 5

6 
st

al
le

d 
fro

m
 a

 s
lo

w
 v

id
eo

 d
ec

od
er

16
6,

79
2 

st
re

am
s 

w
er

e 
ex

cl
ud

ed

◦ 2
13

 d
id

 n
ot

 b
eg

in
 p

la
yi

ng
◦ 1

66
,4

87
 h

ad
 w

at
ch

 ti
m

e 
le

ss
 th

an
 4

s
◦ 9

2 
st

al
le

d 
fro

m
 a

 s
lo

w
 v

id
eo

 d
ec

od
er

15
8,

87
9 

st
re

am
s 

w
er

e 
ex

cl
ud

ed

◦ 3
80

 d
id

 n
ot

 b
eg

in
 p

la
yi

ng
◦ 1

58
,4

74
 h

ad
 w

at
ch

 ti
m

e 
le

ss
 th

an
 4

s
◦ 2

5 
st

al
le

d 
fro

m
 a

 s
lo

w
 v

id
eo

 d
ec

od
er

16
7,

37
5 

st
re

am
s 

w
er

e 
ex

cl
ud

ed

◦ 3
30

 d
id

 n
ot

 b
eg

in
 p

la
yi

ng
◦ 1

67
,0

09
 h

ad
 w

at
ch

 ti
m

e 
le

ss
 th

an
 4

s
◦ 3

5 
st

al
le

d 
fro

m
 a

 s
lo

w
 v

id
eo

 d
ec

od
er

◦ 
1 

se
nt

 c
on

tra
di

ct
or

y 
da

ta

3,
81

0 
st

re
am

s 
w

er
e 

tr
un

ca
te

d 
be

ca
us

e 
of

 a
 lo

ss
 o

f c
on

ta
ct

3,
58

0 
st

re
am

s 
w

er
e 

tr
un

ca
te

d 
be

ca
us

e 
of

 a
 lo

ss
 o

f c
on

ta
ct

3,
32

7 
st

re
am

s 
w

er
e 

tr
un

ca
te

d 
be

ca
us

e 
of

 a
 lo

ss
 o

f c
on

ta
ct

3,
55

7 
st

re
am

s 
w

er
e 

tr
un

ca
te

d 
be

ca
us

e 
of

 a
 lo

ss
 o

f c
on

ta
ct

3,
58

5 
st

re
am

s 
w

er
e 

tr
un

ca
te

d 
be

ca
us

e 
of

 a
 lo

ss
 o

f c
on

ta
ct

13
2,

62
1 

st
re

am
s 

w
er

e 
co

ns
id

er
ed

2.
8 

cl
ie

nt
-y

ea
rs

 o
f d

at
a

12
8,

35
5 

st
re

am
s 

w
er

e 
co

ns
id

er
ed

2.
6 

cl
ie

nt
-y

ea
rs

 o
f d

at
a

12
6,

53
1 

st
re

am
s 

w
er

e 
co

ns
id

er
ed

2.
5 

cl
ie

nt
-y

ea
rs

 o
f d

at
a

12
4,

80
4 

st
re

am
s 

w
er

e 
co

ns
id

er
ed

2.
5 

cl
ie

nt
-y

ea
rs

 o
f d

at
a

12
4,

87
8 

st
re

am
s 

w
er

e 
co

ns
id

er
ed

2.
7 

cl
ie

nt
-y

ea
rs

 o
f d

at
a

63
7,

18
9 

st
re

am
s 

w
er

e 
co

ns
id

er
ed

13
.1

 c
lie

nt
-y

ea
rs

 o
f d

at
a

◦ 1
.2

 c
lie

nt
-d

ay
s 

sp
en

t i
n 
st
ar
tu
p

◦ 7
.9

 c
lie

nt
-d

ay
s 

sp
en

t s
ta
lle
d

◦ 1
3.

1 
cl

ie
nt

-y
ea

rs
 s

pe
nt

 p
lay

ing

Fi
gu

re
A

.1
:

CO
N

SO
RT

-s
ty

le
di

ag
ra

m
[1

02
]

of
ex

pe
rim

en
ta

lfl
ow

fo
r

th
e

pr
im

ar
y

re
su

lts
(T

ab
le

2.
1

an
d

Fi
gu

re
2.

11
),

ob
ta

in
ed

du
rin

g
th

e
pe

rio
d

Ja
n.

26
–A

ug
.7

,2
01

9,
an

d
A

ug
.3

0–
O

ct
.1

6,
20

19
.A

“s
es

si
on

”
re

pr
es

en
ts

on
e

vi
si

tt
o

th
e

Pu
ffe

r
vi

de
o

pl
ay

er
an

d
m

ay
co

nt
ai

n
m

an
y

“s
tre

am
s.”

Re
lo

ad
in

g
sta

rts
a

ne
w

se
ss

io
n,

bu
tc

ha
ng

in
g

ch
an

ne
ls

on
ly

sta
rts

a
ne

w
str

ea
m

an
d

do
es

no
tc

ha
ng

e
TC

P
co

nn
ec

tio
ns

or
A

B
R

al
go

rit
hm

s.

79



B Description of open data

The open data we are releasing comprise different “measurements”—each measurement
contains a different set of time-series data collected on Puffer servers. Below we high-
light the format of interesting fields in three measurements that are essential for analysis:
video_sent, video_acked, and client_buffer.
video_sent collects a data point every time a Puffer server sends a video chunk to a

client. Each data point contains:

• time: timestamp when the chunk is sent
• session_id: unique ID for the video session
• expt_id: unique ID to identify the experimental group; expt_id can be used as a

key to retrieve the experimental setting (e.g., ABR, congestion control) when sending
the chunk, in another file we are providing.

• channel: TV channel name
• video_ts: unique presentation timestamp of the chunk
• format: encoding settings of the chunk, including resolution and constant rate factor

(CRF)
• size: size of the chunk
• ssim_index: SSIM of the chunk
• cwnd: congestion window size (tcpi_snd_cwnd)
• in_flight: number of unacknowledged packets in flight (tcpi_unacked-tcpi_sacked
- tcpi_lost + tcpi_retrans)

• min_rtt: minimum RTT (tcpi_min_rtt)
• rtt: smoothed RTT estimate (tcpi_rtt)
• delivery_rate: estimate of TCP throughput (tcpi_delivery_rate)

video_acked collects a data point every time a Puffer server receives a video chunk ac-
knowledgement from a client. Each data point can be matched to a data point in video_sent
using video_ts (if the chunk is ever acknowledged) and used to calculate the transmission
time of the chunk—difference between the timestamps in the two data points. Specifically,
each data point in video_acked contains:

• time: timestamp when the chunk is acknowledged
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• session_id
• expt_id
• channel
• video_ts

client_buffer collects client-side information reported to Puffer servers on a regular
interval and when certain events occur. Each data point contains:

• time: timestamp when the client message is received
• session_id
• expt_id
• channel
• event: event type, e.g., was this triggered by a regular report every quarter second,

or because the client stalled or began playing.
• buffer: playback buffer size
• cum_rebuf: cumulative rebuffer time in the current stream

Between Jan. 26, 2019 and Feb. 2, 2020, we collected 675,839,652 data points in
video_sent, 677,956,279 data points in video_acked, and 4,622,575,336 data points in
client_buffer.

C Statistical uncertainty in experiments of various lengths

Figure C.1 shows that the confidence intervals of five ABR schemes reduce as the experiment
length increases from a day to eight months, within the period of the primary experiment
on all paths (Figure 2.11). Any benefits reported on an insufficient amount of data can be
purely statistical noise, but results are reliable after collecting about 2.5 years of video data
per scheme.
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(b) Experiment lasting a week since Jan. 26, 2019
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(c) Experiment lasting a month since Jan. 26, 2019
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Figure C.1: Confidence intervals narrowed with more data collected for each scheme.
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D Indigo on simulated networks

Table D.1 gives average Kleinrock’s power of each scheme over the 210 synthetic networks
in Section 3.7.3. We also remove each of the input features of Indigo one at a time, which
results in significantly worse performance than Indigo with all input features. Figure D.1
shows a representative result at 50 ms min one-way delay and across all link rates, where
Indigo is as good as or better than the other schemes.

Scheme Average Kleinrock’s power
Indigo 0.530
Indigo w/o delivery rate 0.480
Indigo w/o CWND 0.479
Indigo w/o sending rate 0.366
Tao 0.104
Indigo w/o queuing delay -0.112
BBR -0.231
Vegas -0.261
QUIC -0.660
PCC -0.792
LEDBAT -0.817
Cubic -1.100
Verus -1.723
Sprout -1.986
WebRTC -2.781
SCReAM -5.084

Table D.1: Average Kleinrock’s power of each scheme over all 210 synthetic networks.
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Figure D.1: Power of schemes over synthetic networks with varying link rates and 50 ms
min one-way delay (§3.7.3). The schemes are split into two graphs for clarity.
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