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1. Background: Microservices

 Cloud apps are shifting toward microservices
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* Imposed SLO on the application latency
* e.g., P99 end-to-end latency < 200 ms

* Traditionally, CPU is overprovisioned

V| satisfied SLO X| resource waste

3. Insight: Bi-Level Control

© Microservices exhibit distinct levels of behavior: Per-service closed-loop control to
» end-to-end application latency ~== autonomously maintain a CPU throttle target
per-service resource usage ? Application-wide online learning to 1ML-GS$tsted
f A periodically compute optimal CPU throttle targets
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2. Problem: Resource Management

How to minimize CPU allocation while meeting SLO?

}Z Challenges
« complex and evolving service dependencies
 delayed end-to-end latency feedback

As a result, we find it impractical to
* maintain an up-to-date view of dependencies

* reliably predict the impact of resource changes
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4. Solution: Autothrottle

5. Evaluation: Fewer SLO Violations, Lower CPU Allocations

Q Autothrottle reduces 90% SLO violations while saving 5.9 cores per hour ]
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Experiment settings

App » Social Network
Cluster » 160 CPU cores
SLO » 200 ms P99
Workload » Bing traces
Baseline » Kubernetes
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