Autothrottle: A Bi-Level Approach to Microservice Resource Management
Francis Y. Yan, Mike Chieh-Jan Liang

1L USENIX NSDI 2024 Outstanding Paper

@

—

1. Background: Microservices

 Cloud apps are shifting toward microservices

Frontend Logic Caching & Storage

Search
Unique ID Read Home \Jemcached \leinieleivl=n) User storage

PG E———— N\ N € —
’ ‘ Memcached) s \MongoDBY MBS CIEkE
= URL Shorten p Post W
edia
i Vs —— smr
|

ndex, [Index, Index,
2 —— Post 4> : MongoDB User timeline
(Giient 118 _ Load !.\&.’Aser W Redis storage
Balancer : \ P Timeline B
%"
[~ \ :
|

/

\>

\

|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|

Home timeline

Redis
storage

RabbitMQ l . Memcached | MongoDB Social graph

storage
— ’

|

I

|

| ‘ ,

|

I |

|

| Social .zl Write Home i
raph Timelin l

| Recommender Grap Ay

Example: Social Network (benchmark)

——

A
Memcached i SMongoDES I\ STe IR (el r=Te =]

* Imposed SLO on the application latency
* e.g., P99 end-to-end latency < 200 ms

* Traditionally, CPU is overprovisioned

V| satisfied SLO X| resource waste

3. Insight: Bi-Level Control

© Microservices exhibit distinct levels of behavior: Per-service closed-loop control to
» end-to-end application latency ~== autonomously maintain a CPU throttle target
per-service resource usage ? Application-wide online learning to 1ML-GS$tsted
f A periodically compute optimal CPU throttle targets
Our methodology: ()
'\ SLOl/ (Tower)
1. Decouple application-level latency/SLO (ot atiocation D f A
. allocation : : performance targe
feedback from service-level resource control 9 S v/
Tower ==
. : ot E
2. Bridge these two levels through A Gl T Captain |= | throttle
(machine-learned) performance targets RPS ! usage
. y, latency : g/i quota st cpy scheduler
@, | e = - J
CPU throttle ratios By—> 3<_,<3
. " Gateway s .
 we find they exhibit a high correlation with latencies) — 1
~-- Application --------- -

2. Problem: Resource Management

How to minimize CPU allocation while meeting SLO?

}Z Challenges
« complex and evolving service dependencies
 delayed end-to-end latency feedback

As a result, we find it impractical to
* maintain an up-to-date view of dependencies

* reliably predict the impact of resource changes

/"

©Q
@J Redmond Research Showcase 2024

4. Solution: Autothrottle

5. Evaluation: Fewer SLO Violations, Lower CPU Allocations

Q Autothrottle reduces 90% SLO violations while saving 5.9 cores per hour]

100 140

60

CPU allocation (cores)

300 20

P99 latency (ms)
200

100

\ L TN 2 A X L
X A (YA NN
\ NSRS LA AN] ‘\ 14
(N L VAN A\ 9&\‘

' 216 240 264 288 312 336 360 384 408 432 456

Time (hour)

480

Experiment settings

App » Social Network
Cluster » 160 CPU cores
SLO » 200 ms P99
Workload » Bing traces
Baseline » Kubernetes

Scan QR code
for more details

m Microsoft

	Slide 1

