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Abstract
Achieving resource efficiency while preserving end-user

experience is non-trivial for cloud application operators.
As cloud applications progressively adopt microservices, re-
source managers are faced with two distinct levels of system
behavior: end-to-end application latency and per-service re-
source usage. Translating between the two levels, however,
is challenging because user requests traverse heterogeneous
services that collectively (but unevenly) contribute to the end-
to-end latency. We present Autothrottle, a bi-level resource
management framework for microservices with latency SLOs
(service-level objectives). It architecturally decouples applica-
tion SLO feedback from service resource control, and bridges
them through the notion of performance targets. Specifically,
an application-wide learning-based controller is employed
to periodically set performance targets—expressed as CPU
throttle ratios—for per-service heuristic controllers to attain.
We evaluate Autothrottle on three microservice applications,
with workload traces from production scenarios. Results show
superior CPU savings, up to 26.21% over the best-performing
baseline and up to 93.84% over all baselines.

1 Introduction

To ensure a seamless end-user experience, many user-facing
latency-sensitive applications impose an SLO (service-level
objective) on the end-to-end latency. Traditionally, cloud ap-
plication operators resort to resource over-provisioning to
avoid SLO violations, yet doing so unnecessarily wastes re-
sources [21, 32]. Previous efforts have demonstrated signif-
icant savings if the excess resources could be harvested or
reclaimed for co-located applications in a multi-tenant envi-
ronment [13, 29, 30, 39, 57, 62].

A key enabler for such resource saving is SLO-targeted re-
source management. Its goal is to continuously minimize the
total resources allocated, while still satisfying the end-to-end
latency SLO. Unfortunately, modern cloud applications can be
beyond current resource managers, due to the progressive shift
from monolithic to distributed architecture [11, 25, 31, 40, 64].
They are a topology of cloud-native services or microser-
vices1, and user requests traverse a chain of execution de-
pendencies among services of logic, databases, and machine
learning (ML) model serving. Notably, this creates distinct
levels of system behavior—the macro perspective reveals the

1In this paper, we use “services” and “microservices” interchangeably.
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Figure 1: Individual microservices (bottom two panels) can
exhibit vastly different resource usage patterns and short-term
fluctuations. In addition, they do not necessarily have a strong
correlation with the end-to-end application-level measure-
ments (top two panels).

end-to-end performance (e.g., user request latencies) and SLO,
and the micro perspective is scoped to local measurements
(e.g., service CPU usage) and resource control.

The distributed nature of microservices brings unique impli-
cations to resource management. First, heterogeneous services
can exhibit vastly different resource usage patterns, due to
how various user requests stress each service. The bottom two
panels in Figure 1 contrast the CPU usage of two services in
an application, Social-Network [22]. Second, application per-
formance and per-service resource usage are measurements at
different levels, without necessarily exhibiting a strong corre-
lation (top two vs. bottom two panels in Figure 1). Translating
between them requires knowing each user request’s actual re-
source requirements and its service-to-service execution flow.
Moreover, this execution chain incurs undesirable delays in
observing effects of allocation changes on the end-to-end
performance, further complicating resource management.

At first glance, it appears that resource managers could
implicitly address the distributed nature by either consider-
ing application-wide dependencies [17, 28, 43, 44, 63] or em-
ploying heuristics with operator-defined rules on individual
services [5]. The former centralizes resource control with a
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global view of the service topology, while the latter delegates
control to each service that acts on locally observed resource
usage. Nevertheless, maintaining a global view is susceptible
to topology changes and evolution [50,64], and relying solely
on local speculations may not achieve global optimality.

Instead, we embrace the distinct levels of distributed sys-
tem behavior, and architecturally decouple mechanisms of
application-level SLO feedback and service-level resource
control. We design Autothrottle, a bi-level learning-assisted
resource management framework for SLO-targeted microser-
vices. The goal is to better use the visibility into application
performance and SLO, to assist services in autonomously ad-
justing their own resource allocations. Autothrottle conveys
this bridging “assistance” through performance targets, which
translate the desired application performance to local proxy
metrics measurable by services. Doing so hides low-level
resource control details from the SLO feedback mechanism.
In this paper, we use CPUs to discuss the framework design—
not only is the CPU harder to manage due to its higher usage
fluctuation over time [13, 22, 40], but it also has an immense
impact on microservice response time [38, 57, 63].

At each microservice, Autothrottle locally runs a light-
weight resource controller called Captain. Captain swiftly
adjusts CPU allocations through OS APIs (e.g., CPU quota in
Linux’s cgroups), to ensure its governed microservice reaches
the given performance target. Autothrottle represents this tar-
get using an unconventional metric—CPU throttles, namely
the number of times a service exhausts its CPU quota in a time
period. Not only are CPU throttles sufficiently cheap to sam-
ple at high frequency to enable Captains’ timely adjustments,
but we also observe that they have higher correlation with
latencies than other proxy metrics such as CPU utilization
(§5.3). These characteristics make CPU throttles an indicative
target to track locally, for maintaining an end-to-end SLO.
At the application level, Autothrottle employs a centralized
SLO feedback controller called Tower. It observes the ap-
plication workload measured by RPS (requests per second)
and learns to determine the most cost-effective performance
targets that maintain the SLO, using a lightweight online al-
gorithm known as contextual bandits [14].

This paper makes the following key contributions:

• We examine unique implications that SLO-targeted mi-
croservices introduce to resource management (§2). Since
there is no strong correlation between the end-to-end appli-
cation performance and per-service resource usage, directly
computing the optimal resource allocations is non-trivial.

• Autothrottle is a bi-level learning-assisted framework (§3),
to embrace distinct levels of distributed system behavior. It
separately designs mechanisms of application-level SLO
feedback and service-level resource control, and introduces
CPU-throttle-based performance targets to bridge them.

• Comprehensive experiments (§5) demonstrate Autothrot-
tle’s superior CPU savings over state-of-the-art heuristics

and ML-based baselines, in three SLO-targeted applica-
tions: Train-Ticket [52], Social-Network [63], and Hotel-
Reservation [22]. Compared with the best-performing base-
line in each application, Autothrottle maintains the SLO for
the 99th percentile latency while saving up to 26.21% CPU
cores for Train-Ticket, up to 25.93% for Social-Network,
and up to 7.34% for Hotel-Reservation, across four real-
world workload patterns. Finally, running Social-Network
over a 21-day period with production workloads from a
global cloud provider, Autothrottle saves up to 35.2 CPU
cores while reducing hourly SLO violations by 13.2×.

2 Background and Motivation

Our goal of SLO-targeted resource management is to mini-
mize the total CPU allocations to microservice-based appli-
cations, while avoiding SLO violations on the user request
latency. Following real-world findings [19], our SLO is an
upper limit on tail latencies, specifically the 99th percentile
(P99) request latencies unless otherwise noted.

2.1 Implications of microservices

Unlike monolithic applications, the distributed nature of mi-
croservices implies that multiple services collectively con-
tribute to the end-to-end latency. This section presents obser-
vations, to motivate its implications on computing per-service
resource allocations from the end-to-end latency SLO.

2.1.1 Service execution dependencies

As user requests traverse services, their end-to-end latency is
a function of per-service performance (and hence resource
usage). Being functionally different, services can consume re-
sources differently. Moreover, service execution dependencies
can introduce complex correlations to this function—not only
are there various patterns such as parallelism, but services can
also exhibit unexpected increases in resource demand.

An illustrative example is backpressure [22]—as an under-
provisioned service undergoes performance degradation dur-
ing request processing, the resource manager can misinter-
pret its idling parent’s longer response time as the culprit.
Simply identifying all parent-child relations does not fully
solve the problem, as backpressure can vary subtly depend-
ing on service implementations. In one case we encountered,
the CPU usage of a waiting parent unexpectedly increased
with the number of requests, which was counterintuitive as
waiting for child services should result in idle CPUs. Fur-
ther investigations revealed that the parent service spawned
a separate thread for each outstanding request (i.e., Thrift’s
TThreadedServer RPC model), leading to excessive thread
maintenance and spurious context switching. An alternative
implementation with non-blocking or asynchronous I/O (e.g.,
Thrift’s TNonBlockingServer) eliminated the problem.
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To grapple with the complexities arising from service de-
pendencies, prior work considers how the end-to-end perfor-
mance directly correlates with application-wide execution
dependencies. However, maintaining an accurate and up-to-
date global view of these dependencies is both challenging
and costly. First, the interdependencies among services are
constantly evolving during development, often with multiple
versions of the same service coexisting [50], requiring fre-
quent updates to the global view. Second, although ML-based
resource management strategies [43, 63] have the potential to
comprehend complex and large-scale service dependencies,
they may entail substantial training and retraining expenses.
Third, fine-grained distributed tracing (beyond the basic mon-
itoring through sampling-based tracing) may be necessary for
resource managers to observe and analyze service dependen-
cies [23, 44], resulting in additional system overheads from
increased instrumentation and telemetry collection.

Observation #1: Maintaining an up-to-date global view
of service dependencies can be impractical.

2.1.2 Delayed end-to-end performance feedback

The chain of service execution dependencies brings about the
delayed effect, i.e., a time delay for the impact of any changes
in resource allocations or workloads to be fully observed in
the end-to-end performance. This prevents resource managers
from immediately responding to misallocations. The delayed
effect is often amplified. One source is service queues—under-
provisioning of resources will cause requests to accumulate
in queues, and thus SLO violations are not detected until all
queued requests are eventually processed or timed out. Even
if resources are scaled at this point, it takes time to flush
queues [22,63]. Another amplification is that SLO is typically
defined on aggregated performance data (e.g., percentiles),
which require a sufficient number of requests to be profiled.

In light of the delayed effect, prior work [63] proposes to
proactively predict the long-term impact of resource changes
on the end-to-end performance. Such performance predictions
are theoretically possible but they usually involve expensive
data collection and model training. On the other hand, prema-
turely deploying ML models can result in a high percentage of
mispredictions. For instance, our efforts to fully train Sinan’s
neural networks [63] for a 28-microservice application took
14+ hours, plus ∼6 hours to collect 20,000 training data points.
Despite reproducing the published prediction accuracy, we
observed that mispredictions can trick resource managers to
overallocate at least 40.75% more CPU cores (§5).

Observation #2: Predicting end-to-end application per-
formance under the delayed effect can be unreliable.

2.2 A practical approach
In light of the observations in §2.1, a more promising ap-
proach for SLO-targeted resource managers is to embrace the

distributed nature of microservices by taking into account of
the distinct levels of system behavior—the macro perspective
reveals the end-to-end performance (e.g., user request laten-
cies) and SLO, whereas the micro perspective is scoped to
local measurements (e.g., service CPU usage) and control.

Naturally, these two levels can map to: (1) application-level
SLO feedback, which compares the end-to-end performance
and SLOs, and (2) service-level resource control, which com-
putes resource allocations based on local measurements. In
fact, if we architecturally decouple these mechanisms, it be-
comes feasible to position them close to their required inputs.
Doing so brings the benefit of fast reaction, which opens up
opportunities for resource managers to relax the requirement
of computing the optimal resource allocations. Rather than
striving to accurately model service dependencies (§2.1.1)
or predict long-term application-wide behavior (§2.1.2), we
can now employ lightweight service-level controllers that
autonomously and swiftly adjust resource allocations, as-
sisted by periodic guidance computed at the application level
through a lightweight online learning approach.

In summary, SLO-targeted resource managers for microser-
vices should incorporate the following design principles.

1. Decouple mechanisms of application-level SLO feedback
and service-level resource control.

2. Rapidly drive per-service resource control with local per-
formance targets and near-term prospects.

3. Achieve practicality through lightweight solutions.

3 The Autothrottle Framework

Following the design principles laid out in §2.2, we present
Autothrottle, a practical and readily deployable resource man-
agement framework for SLO-targeted microservices.

3.1 Overview
Autothrottle is a bi-level learning-assisted framework, consist-
ing of an application-wide global controller and per-service
local controllers. The application-level controller is based on
online learning, periodically assisting local resource control
with its visibility into application workloads, end-to-end la-
tencies, and SLO violations. The service-level controllers, on
the other hand, are heuristic-based, continuously performing
fast and fine-grained CPU scaling using local metrics as well
as the assistance from the global controller.

The “assistance” bridging the two levels is based on the
notion of performance target, a target performance level set
by the application-wide controller for per-service controllers
to attain. Autothrottle implements the performance target
with CPU throttle ratio—the fraction of time a microservice
is stopped by the underlying CPU scheduler. This design is
motivated by the strong correlation between CPU throttles
and service latencies revealed by our correlation test (§5.3).
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Maintaining a CPU throttle ratio locally also allows tolerating
a certain range of workload fluctuations (§5.3). When per-
service controllers fail to rein in end-to-end latencies (e.g.,
the workload exceeds the tolerable range), the application-
wide controller issues lower throttle targets to guide local
controllers to allocate more CPUs. Conversely, higher throttle
targets are assigned in the event of CPU over-provisioning.

Acting as a broker, the performance target allows Autothrot-
tle to decouple the mechanisms of application-level SLO
feedback and service-level resource control. Consequently,
we are able to simplify the learning process of the application-
level controller by concealing low-level resource details and
avoiding the overhead of aggregating them, while enabling
per-service controllers to focus on a self-contained in-situ
task—reaching a given performance target using locally avail-
able information. Our bi-level design sets us apart from ap-
proaches that directly infer resource demands with proxy
metrics (e.g., [5]) or machine learning (e.g., [63]).

Figure 2 depicts the architecture of Autothrottle. We re-
fer to the per-service controllers as Captains (§3.2), and the
application-wide controller as the Tower (§3.3).2

Autothrottle Captains. At the local level, each microservice
runs a Captain instance, which periodically receives perfor-
mance targets—CPU throttle ratios—from the Tower and
strives to realize these targets using heuristic control. The
heuristic control algorithm collects statistics on CPU usage
and throttles, and employs two feedback control loops to scale
CPUs up and down, respectively. This lightweight design en-
sures swift and fine-grained CPU autoscaling of the Captain
even amid rapidly fluctuating workloads.

Autothrottle Tower. At the global level, the Tower leverages
contextual bandits [14], a lightweight class of online rein-
forcement learning (RL), to dynamically determine suitable
performance targets that maintain the SLO. It monitors ap-
plication workload (e.g., RPS) and observes CPU allocations
and end-to-end latencies (along with associated SLO viola-
tions) as feedback for its output targets. This online learning
approach is directly applicable to any microservices, elimi-
nating the need for extensive offline profiling or training.

Overall, Autothrottle takes a pragmatic stance and provides
a resource management framework that is readily deployable
across diverse latency-sensitive microservice applications.
Next, we elaborate on Autothrottle from the bottom up, start-
ing off with Captains (§3.2), followed by the Tower (§3.3).

3.2 Per-service controllers—Captains
Each Captain periodically (e.g., every minute) receives a tar-
get CPU throttle ratio from the Tower. Given a throttle target,
Captain focuses on a self-contained, in-situ task—scaling up
and down the CPUs made available to its governed service

2The air traffic control “tower” (application-wide controller) assigns
“routes” (performance targets) to flights, while each “captain” (per-service
controller) follows the assigned route by actually steering the aircraft.
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CPU allocation performance target

(Tower)

Figure 2: Autothrottle features bi-level resource management:
The application-level learning-based controller (Tower), ob-
serving end-to-end latencies and workloads, periodically sets
performance targets, expressed as CPU throttle ratios, for per-
service heuristic controllers (Captains) to meet.

in order to meet the throttle target upon changing demand.
Algorithms 1 and 2 present the pseudocode of Captain’s main
components, which we describe in detail below.

3.2.1 Resource metrics and knobs

Common CPU schedulers in the OS, such as the Linux CFS
scheduler we use as a running example in this paper, assign
each microservice a CPU quota (e.g., cpu.cfs_quota_us)
to limit and isolate resource usage. To accomplish the task
of maintaining a target CPU throttle ratio, Captain continu-
ously collects two statistics exposed by the OS in each time
window—CPU throttle count and CPU usage.

CPU throttle count. The Linux CFS scheduler maintains
a CPU throttle count for each microservice in the variable
cpu.stat.nr_throttled, which represents the cumulative
number of CFS periods (100 ms by default) during which
the CPU quota has been exhausted. Intuitively, if the CPU
quota is used up early in a CFS period before a request can be
fulfilled, the request will be approximately delayed by the re-
maining period, underscoring the importance of avoiding CPU
throttles when maintaining latency SLOs. Anecdotal evidence
in blog posts [15, 34] corroborates our intuition. To calculate
the CPU throttle ratio over a time window, we divide the in-
crease in the CPU throttle count (cpu.stat.nr_throttled)
by the number of elapsed CFS periods.

CPU usage. The Linux CFS scheduler also reports the total
CPU time consumed by a microservice as cpuacct.usage.
This metric is particularly useful when the CPU is over-
provisioned, as it reveals the actual (lower) CPU demand.
Otherwise, this actual demand would be capped by the allo-
cated CPUs if under-provisioned and thus remain unknown.

3.2.2 Multiplicative scale-up

In every time window of N (N = 10 by default) CFS periods,
each Captain compares the measured CPU throttle ratio at its
microservice with the target ratio. When the measured ratio
exceeds the target, it indicates the CPU is under-provisioned,

4



Algorithm 1: Captain: scaling up and down
1 /* executes every N periods */
2 throttleCount = throttle count during last N periods;
3 throttleRatio = throttleCount/N;
4 margin = max(0, margin+ throttleRatio− throttleTarget);
5 if throttleRatio > α× throttleTarget then
6 /* multiplicatively scale up */
7 quota = quota× (1+ throttleRatio−α× throttleTarget);
8 else
9 /* instantaneously scale down */

10 history = CPU usage history in the last M periods;
11 proposed = max(history)+margin×stdev(history);
12 if proposed ≤ βmax ×quota then
13 quota = max(βmin ×quota, proposed);
14 end
15 end

Algorithm 2: Captain: rollback mechanism
1 /* executes every period for N periods after each scale-down */
2 lastQuota = CPU quota before scale-down;
3 throttleCount = throttle count since scale-down;
4 throttleRatio = throttleCount/N;
5 if throttleRatio > α× throttleTarget then
6 /* revert to the previous (higher) quota before scale-down
7 with an additional allocation equal to the quota difference */
8 quota = lastQuota+(lastQuota−quota);
9 margin = margin+ throttleRatio− throttleTarget;

10 end

demanding a prompt increase in the CPU quota to prevent
imminent SLO violations at the application level.

To ensure that any desired target can be reached quickly
within several steps, Captain increases the current CPU quota
multiplicatively. We further make the size of the increase
proportional to the difference between the measured CPU
throttle ratio and the target ratio. This represents a form of
proportional control, where a larger difference results in a
larger stride in the CPU quota increase. The rationale is that
when the difference is significant, a queue of requests is likely
to have built up, thus requiring more CPUs to drain.

In practice, we find that the local workload arriving at a
microservice is naturally bursty and irregular—regardless
of the pattern of end-to-end requests—tricking Captains into
spurious scale-ups. Hence, we execute the scale-up only when
the CPU throttle ratio surpasses “α× target ratio” (α ≥ 1),
where α is a customizable weight that controls the sensitivity
to transient load spikes. Correspondingly, the CPU quota
is also multiplied by “1+ throttle ratio−α× target ratio” in
each step. The pseudocode is in Line 5–7 of Algorithm 1.

3.2.3 Instantaneous scale-down

Under frequent CPU throttling, Captain is forced to incremen-
tally probe the actual CPU demand of the service. In contrast,
when the measured throttle ratio is below the target ratio,

the service’s CPU demand has been adequately met. Con-
sequently, historical CPU usage begins to more accurately
reflect the actual (less throttled) CPU demand and help instan-
taneously determine the desired CPU quota.

Motivated by this characteristic of over-provisioning, the
Captain maintains a sliding window of CPU usage over the
most recent M (M = 50 by default) CFS periods, and cal-
culates a new CPU quota based on two statistics from the
sliding window: the maximum and the standard deviation of
CPU usage. Specifically, the proposed quota is “max CPU
usage + margin× standard deviation of CPU usage,” where
margin ≥ 0 is a dynamically tuned parameter that generally
increases when the CPU throttle ratio exceeds the target ratio
and decreases otherwise. To avoid unnecessary fluctuations
in CPU allocation, the proposed quota is put into action only
when it represents a significant-yet-moderate change. The
details are described in Line 9–14 of Algorithm 1.

Our scale-down design draws inspiration from prior
work [45,46], but differs in the carefully maintained parameter
margin that depends on CPU throttles. Intuitively, if the CPU
is recently throttled more often than desired, we should be
more conservative by using a larger margin in the subsequent
scale-down to avoid overreacting to momentary tranquility
amid workload spikes; and vice versa. In summary, historical
CPU usage in the sliding window allows for instantaneous
scale-down, reclaiming extra CPU allocations in a single step.

3.2.4 Rollback mechanism after scaling down

Accidentally scaling up CPUs only leads to resource waste
(and existing cloud applications tend to be over-provisioned);
however, mistakenly scaling down the CPU allocation to any
microservice may cause SLO violations at the application
level. Thus, we introduce a fast rollback mechanism to the
Captain to revert “reckless” scale-downs as follows.

After each scale-down, we continuously check whether it is
“reckless”—if it has caused the CPU throttle ratio to exceed
α× target ratio—during every CFS period within the next N
periods. We note that the triggering condition is the same as
that used for scaling up, but due to the urgency of initiating
a rollback, this check is performed more frequently, without
waiting for the Captain’s regular decision-making interval
(N periods). After a rollback is triggered, the current CPU
quota is restored to the previous (higher) quota used before
the scale-down, plus an additional allocation equal to the
difference between the two quotas. We grant slightly more
CPUs to account for the potential processing delays that may
have occurred since the erroneous scale-down. Details of the
rollback mechanism are presented in Algorithm 2.

3.3 Application-level controller—Tower

In Autothrottle, Tower delegates the in-situ resource control
to per-service Captains and only provides periodic assistance
by dispatching the target CPU throttle ratios for Captains to
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meet. This indirection via throttle targets effectively avoids
the latency overhead associated with distributed tracing and
logging, while retaining Tower’s global perspective on end-
to-end requests and SLO feedback.

We design Tower to compute a new target throttle ratio in-
frequently, e.g., once a minute, leaving ample time for tail re-
quest latencies and average CPU usage to stabilize as the new
target settles in. Importantly, doing so minimizes the influ-
ence of Tower’s previous decisions, simplifying the problem
into a “one-step” decision-making process: Tower only needs
to determine the optimal CPU throttle targets for the current
step, without considering their long-term consequences.

This “one-step” nature motivates us to employ contextual
bandits, a lightweight class of online reinforcement learning
(RL) algorithms. In the taxonomy of RL, contextual bandits
can be viewed as one-step RL and are well suited for real-time
online scenarios in which the algorithm is required to learn
efficiently from a limited amount of sample data.

3.3.1 Primer on contextual bandits

Recent work has modeled resource management with se-
quential decision-making paradigms and seen the applica-
tion of multi-armed bandits [46, 47] and reinforcement learn-
ing [41, 44, 59]. Contextual bandits are intermediate between
multi-armed bandits and the full-fledged RL [54].

Contextual bandits are like multi-armed bandits in that
they are well suited to problems where an action (e.g., CPU
throttle targets) taken at a step (e.g., one-minute interval) does
not have long-term impact beyond that step. They receive
a cost (negative reward) as feedback for the chosen action,
and aim to minimize the cumulative cost (e.g., comprising
CPU allocations and SLO violations). Conversely, contextual
bandits also differ from multi-armed bandits by their ability to
make decisions based on the observation of the system state,
known as the context (e.g., RPS). This context can provide
valuable information that aids in the learning process (§5.3).

In contrast to the full RL, which optimizes a sequence of
future steps, contextual bandits only optimize the current step
owing to their assumption that each chosen action only af-
fects the immediate outcome without long-term consequences.
Moreover, full RL typically demands extensive offline train-
ing before deployment as well as frequent retraining (e.g.,
upon significant changes in microservices), whereas contex-
tual bandits are more lightweight (with simpler models) and
suitable for online learning with considerably fewer samples.

In solving contextual bandit problems, a common approach
is to train a cost-prediction model that estimates the cost of
taking each action within a context. Due to their inherent
partial observability, however, contextual bandits can only
observe the costs of actions they select but not the costs of
others. To enhance their performance and sample efficiency,
a widely adopted improvement is to estimate the costs of un-
used actions via counterfactual estimates [12, 20, 48]. This
approach reduces contextual bandit problems to cost-sensitive

classification [35], which can then be addressed using stan-
dard supervised learning. We adopt this approach and refer
the reader to Bietti et al. [14] for more details.

3.3.2 Realizing contextual bandits in Tower

Next, we describe the contextual bandit algorithm used in
Tower. The algorithm operates with a step size of one minute,
and it aims to learn to output an action that incurs the lowest
cost given the observed context at each step.
Context. Tower selects the average RPS observed in the last
step as the context because the optimal CPU throttle target
depends on the RPS (§5.3). We refrain from predicting the
RPS for the next step due to the inherent difficulty in accu-
rately forecasting RPS; moreover, our Captains have been
intentionally designed to tolerate short-term RPS fluctuations
(§5.3). Other metrics such as CPU usage are not included
in the context as they are merely the byproducts of applying
a throttle target to an RPS, with the RPS serving as the pri-
mary causal factor. The composition of the workload (i.e.,
the distribution of different request types) is relevant, but our
focus in this work remains on constant workload composition
(Appendix A), following the setup in prior work [22, 63].
Action. Given an instantiation of the Captain’s resource
control algorithm, we search for a ladder of CPU throttle
targets as the actions. The search is a one-time process for
all applications. By default, our action space consists of 9
throttle targets, ranging from 0 to 0.3 (§4).
Reduction of action space. A microservice-based applica-
tion can contain 10–1000s of services [11, 25, 31, 40, 64]. In
the case of 9 throttle targets, generating a different CPU throt-
tle target for each individual service would result in 9#services

actions, rendering it infeasible for contextual bandits to learn.
As a solution, Tower clusters microservices into two classes
and outputs an action for each class, effectively reducing the
action space to 92 = 81. To implement the clustering, we use
the standard k-means algorithm [37] to group microservices
based on their average CPU usage. Our empirical results in
§5.3 suggest a diminishing return beyond two clusters.
Cost function. We define the cost received per step as follows.
When the SLO is met after the step, we only use the total CPU
allocation as the cost, since the actual latencies below SLO
matter no more. To this end, Tower requests Captains to send
their actual CPU allocations as feedback every minute, and
then normalizes the total allocation linearly into [0,1]. On
the other hand, when the SLO is violated, we set the cost
to only contain the tail latency, linearly normalized to [2,3]
considering the higher priority of SLO violations. We arrived
at the two normalization ranges above based on their empirical
performance compared with other ranges we tested, but we
do not claim our cost function is the best.
Noise reduction for costs. Our contextual bandit algorithm
learns online and updates its model weights on every (context,
action, cost) tuple, i.e., most recent RPS, two throttle targets,
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and the incurred cost. In reality, however, we observe highly
noisy costs that result in confusion and poor performance
of the model, supposedly due to the complex microservice
system and the dynamics in Captains. To address this, we
buffer and group recent samples using (context, action) as the
index after quantizing the RPS. Given a new sample, we use
the median cost of the group it falls into—rather than the cost
computed for that individual sample—to update the model.
Doing so significantly reduces the noise in costs and stabilizes
the online learning process.

Exploration. Similar to multi-armed bandits and RL, contex-
tual bandits rely on exploration to acquire knowledge about
the costs of different actions, e.g., using ε-greedy [35] to
choose a random action with a small probability of ε (the best
action is selected otherwise). Despite a reduced action space,
randomly exploring all 81 actions within a context remains
inefficient as each sample requires one minute to complete;
repeated sampling is further required to calibrate noisy cost
estimates. To ensure efficient exploration without impeding
online learning, we explore only the neighbors of the best
action in the action space. Given a sorted ladder of the avail-
able CPU throttle target , r1 < r2 < .. . < r9, if the best action
consists of (ri, r j), 1 ≤ i, j ≤ 9, then each of its neighbors
(ri, r j−1), (ri, r j+1), (ri−1, r j), (ri+1, r j) is explored next with
an equal probability of ε/4 (subject to boundary conditions).
The rationale is that the throttle target ladder is monotonic,
allowing Tower to move upward or downward one step at a
time without missing the optimal action.

4 Implementation

Our current implementation supports microservice applica-
tions deployed as pods on Kubernetes, but it can be easily
extended to other container orchestration frameworks (e.g.,
OpenShift and Docker Swarm). Autothrottle is open-sourced
at https://github.com/microsoft/autothrottle.

Captain. Each microservice is associated with a Captain
co-located on the same worker node, so we deploy Captains
as processes on worker nodes of the Kubernetes cluster. Cap-
tain implements the following three functionalities. First, it
communicates with the Tower over a TCP socket, exchang-
ing CPU throttle targets and allocations. Second, it collects
CPU throttling and usage statistics from Linux cgroup API
in every CFS period of 100 ms, as the input to the local re-
source controller. Third, it runs the resource controller for
all microservices on the same worker node, and sets their
CPU quotas (cpu.cfs_quota_us) accordingly. As Captain
only comprises lightweight heuristic-based control loops, it
does not require any pre-deployment training.

The pseudocode of Captain is outlined in Algorithms 1
and 2. Our default parameters are N = 10, M = 50, α = 3,
βmax = 0.9, βmin = 0.5. They can be adjusted accordingly. A
larger N or M lowers sensitivity to the noise in CPU usage,

hence slower reaction. α sets the supported range of throttle
ratios to (0, 1/α). A smaller α increases the upper bound but
decreases the tolerance on throttle ratio fluctuations. βmax and
βmin prevent overly small or large allocation changes.

Tower. One instance of Tower runs globally alongside the
application (i.e., in the same cluster), initialized with a user-
specified SLO. It collects average RPS and tail latencies from
the Locust workload generator, but can be extended to hook
up to an application gateway. Furthermore, Tower receives
the actual CPU allocations from Captains after dispatching
CPU throttle targets to them every minute.

Tower leverages the widely used Vowpal Wabbit (VW) li-
brary [10] to implement contextual bandits. For each group
of microservices, the model outputs one of the 9 throttle tar-
gets: 0.00, 0.02, 0.04, 0.06, 0.10, 0.15, 0.20, 0.25, and 0.30.
Designed for efficient online learning, VW offers lightweight
model options such as linear regression or a shallow neural
network with a single hidden layer. We opt for a neural net-
work model with 3 hidden units after performing an ablation
study (§5.3), and train it with a learning rate of 0.5. The dou-
bly robust estimator [20] is employed in the bandits for policy
evaluation to estimate the costs of untaken actions. Moreover,
we disable the native ε-greedy algorithm to implement our
customized exploration strategy (§3.3.2). The specific VW
usage is detailed in Appendix B.

Online training starts with an exploration stage, which al-
lows VW to randomly explore how different CPU throttle
targets would impact application latencies. During this stage,
each randomly chosen action will be executed for 2 minutes.
Only the second minute is used for cost calculation and train-
ing, in order to avoid interference from the previous chosen
action. This exploration stage lasts ∼6 hours, during which
application latencies may exceed the SLO.

After the exploration stage, Tower starts to exploit the best
action, while still exploring neighboring actions with a total
of 10% probability using ε-greedy. Tower runs every minute
to collect last minute’s (context, action, cost) sample. All
recent samples are grouped using (context, action) as the
index with RPS quantized into bins of 20, and each group’s
cost is defined as the median cost of the group. Since training
each unique (context, action) only once is insufficient for
contextual bandits, 10,000 training data points are sampled
from these groups randomly. A contextual bandit model is
then trained on these samples, and predicts the next best action
based on RPS. As a reference, this training-and-prediction
process takes less than one second in our setup.

5 Evaluation

We evaluate Autothrottle’s superior resource saving with three
SLO-targeted microservice applications, against state-of-the-
art heuristic- and ML-based baselines. Major results include:

(1) Over the best-performing baseline in each application,
Autothrottle maintains the given application P99 latency SLO,
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while achieving a CPU core saving up to 26.21% for Train-
Ticket, up to 25.93% for Social-Network, and up to 7.34% for
Hotel-Reservation. Over all baselines, its savings can be up
to 93.84%, 55.32%, and 83.99%, respectively.

(2) A 21-day study of Social-Network (with real-world
workload trace from a global cloud provider) shows a sav-
ing up to 35.2 CPU cores, over the best-performing baseline.
Meanwhile, it reduces hourly SLO violations from 71 to 5.

(3) Microbenchmarks evaluate Autothrottle’s design and
tolerance to workload fluctuations and load-stressing.

5.1 Methodology

Benchmark applications. We deploy three SLO-targeted mi-
croservice applications: (1) Train-Ticket [52], with 68 distinct
services, (2) Hotel-Reservation from DeathStarBench [22],
with 17 distinct services, and (3) Social-Network used in
Sinan [63], a variant of the Social-Network application from
DeathStarBench, with 28 distinct services including two ML
inference serving services: a CNN-based image classifier and
an SVM-based text classifier. These applications are repre-
sentative of real-world microservices, with stateless services
(e.g., business logic), data services (e.g., key-value stores),
and gateways. Deployments are managed by Docker and Ku-
bernetes. Parent-child service communications are through
popular RPC frameworks such as gRPC and Thrift.

Application SLOs are specified on the hourly P99 la-
tency [19]—1,000 ms for Train-Ticket, 200 ms for Social-
Network, and 100 ms for Hotel-Reservation.

Comparison baselines. Baselines include (1) Kubernetes de-
fault autoscalers [5] (denoted as “K8s-CPU” and “K8s-CPU-
Fast”), and (2) state-of-the-art ML-driven solution, Sinan [63].

K8s-CPU locally maintains each service’s average CPU
utilization, with respect to the user-specified CPU utilization
threshold (e.g., 50%). Every m=15 seconds, it measures ser-
vice’s CPU usage, and computes the optimal allocation by
“CPU usage / CPU utilization threshold.” Then, it sets the CPU
limit to the largest allocation computed in the last s=300 sec-
onds. We also include a faster version called K8s-CPU-Fast,
which has m=1 and s=20. Since Kubernetes relies on users
to properly translate the application SLO to CPU utilization
threshold, we manually try different thresholds to find the
appropriate one for each experiment (Appendix F).

Sinan leverages ML models (e.g., a convolutional neural
network and a boosted tree model) to globally assess each
service’s resource allocation. Starting with the open-sourced
Sinan [8], we follow instructions to train application-specific
models offline for 20+ hours. Since Sinan relies on users to
properly set several hyperparameters, we manually tune for
each application. During experiments, we run Sinan every
second—given historical resource usage and latencies, Sinan
tries to predict the optimal CPU allocation that is unlikely to
violate the SLO over both the short and long terms.
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Figure 3: Our workload traces capture common patterns of
RPS (requests per second) on an hourly basis. These patterns
have been observed in real-world scenarios: Puffer stream-
ing requests [60], Google cluster usage [58], and Twitter
tweets [9]. We also recorded a full 21-day workload trace
from a global cloud provider for long-term evaluation. We
scale these traces accordingly for each benchmark application
to saturate the cluster (Appendix E).

Experiment setup. We generate workloads with Locust [7],
which is configured to mix application requests (Appendix A)
to stress as many services as possible. Locust replays work-
load traces to reproduce RPS (requests per second). The first
set of traces captures hourly RPS patterns, which are com-
monly observed in production environments: Puffer’s stream-
ing requests [60], Google’s cluster usage [58], and Twitter
tweets [9]. Figure 3 illustrates these patterns: diurnal, con-
stant, noisy, and bursty. We also keep a full 21-day workload
trace from a global cloud provider for long-term evaluation.
Depending on the complexity of benchmark applications, we
scale traces accordingly to saturate the cluster (Appendix E).

Each experiment ends when Locust finishes replaying a
trace. For comparisons, we record the following per-hour mea-
surements: (1) the average number of CPU cores allocated,
and (2) the application end-to-end P99 latency.

Our testbeds consist of a 160-core cluster (over five 32-
core Azure VMs with AMD EPYC 7763 processors) and a
512-core cluster (over six 64-core and four 32-core physical
servers with Intel Xeon Silver 4216 processors).

5.2 Application SLO and resource saving

We evaluate the amount of CPU resources that Autothrottle
saves over baselines, while every algorithm tries to maintain
the hourly SLO over time. To ensure that all baselines can
achieve their best results, we manually identify and tune their
settings prior to experiments (Appendix F).

Table 1 summarizes empirical results on the 160-core clus-
ter, and Autothrottle outperforms baselines in all applications.
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Workload Autothrottle K8s-CPU K8s-CPU-Fast Sinan

Diurnal 30.4 58.0 (↓47.59%) 41.2 (↓26.21%) 278.4 (↓89.08%)
Constant 21.7 24.8 (↓12.50%) 27.3 (↓20.51%) 279.9 (↓92.25%)
Noisy 15.5 23.6 (↓34.32%) 17.7 (↓12.43%) 251.8 (↓93.84%)
Bursty 17.7 27.1 (↓34.69%) 21.9 (↓19.18%) 268.3 (↓93.40%)

(a) Train-Ticket application (SLO: 1,000 ms P99 latency)

Workload Autothrottle K8s-CPU K8s-CPU-Fast Sinan

Diurnal 77.5 93.9 (↓17.47%) 115.5 (↓32.90%) 162.7 (↓52.37%)
Constant 88.7 115.6 (↓23.27%) 118.8 (↓25.34%) 149.7 (↓40.75%)
Noisy 57.5 66.5 (↓13.53%) 105.1 (↓45.29%) 105.2 (↓45.34%)
Bursty 50.0 67.5 (↓25.93%) 99.7 (↓49.85%) 111.9 (↓55.32%)

(b) Social-Network application (SLO: 200 ms P99 latency)

Workload Autothrottle K8s-CPU K8s-CPU-Fast Sinan

Diurnal 15.3 15.7 (↓2.55%) 16.5 (↓7.27%) 45.5 (↓66.37%)
Constant 11.2 11.5 (↓2.61%) 11.3 (↓0.88%) 21.2 (↓47.17%)
Noisy 10.8 12.1 (↓10.74%) 11.6 (↓6.90%) 65.9 (↓83.61%)
Bursty 10.1 15.7 (↓35.67%) 10.9 (↓7.34%) 63.1 (↓83.99%)

(c) Hotel-Reservation application (SLO: 100 ms P99 latency)

Table 1: Average number of CPU cores that Autothrottle and
baselines allocate to satisfy the SLO (and thus latencies are
elided). Percentages in parentheses quantify Autothrottle’s
CPU savings over each baseline. The overall best-performing
baseline for each application is highlighted in gray. For K8s-
CPU and K8s-CPU-Fast, we manually search for their optimal
utilization thresholds (to minimize the average CPU alloca-
tion), per application and workload trace (Appendix F).

We make the following observations, with respect to heuristic-
based baselines. First, in Social-Network, Autothrottle saves
up to 25.93% of CPU resources (or 17.5 cores) over K8s-CPU,
and up to 49.85% of CPU resources (or 49.7 cores) over K8s-
CPU-Fast. Delving into empirical results, Figure 4 suggests
that tuning the baselines’ CPU utilization thresholds does
not make them outperform Autothrottle. Taking the diurnal
workload as an example, the figure shows that Autothrottle
is able to maintain the application SLO with the minimum
CPU allocation—Autothrottle achieves a P99 latency of 178
ms with only 77.5 cores, whereas K8s-CPU achieves 177 ms
with 115.5 cores and K8s-CPU-Fast achieves 171 ms with
93.9 cores, at best. When allocating a comparable number of
CPUs (∼80 cores) to Autothrottle, K8s-CPU and K8s-CPU-
Fast would violate the SLO, resulting in latencies of 252 ms
and 418 ms respectively. Second, Autothrottle has a relatively
low resource reduction on Hotel-Reservation. This is due to
the application simplicity where requests traverse an average
of only 3 microservices. A similar observation can be made
for the constant workload trace, where the relatively static
RPS pattern simplifies scaling decisions.

Furthermore, Table 1 shows that Autothrottle outperforms
the ML-enabled baseline, Sinan. Its CPU saving is at least

CPU allocation (cores)

P
99

 la
te

nc
y 

(m
s)

SLO

75 90 105 120 135 150 165

15
0

30
0

45
0

Autothrottle
K8s-CPU
K8s-CPU-Fast
Sinan

Figure 4: Application latency vs. CPU allocations, as we
vary the two baselines’ CPU utilization threshold for Social-
Network under the diurnal workload trace. Dashed red line
illustrates the 200 ms SLO. Autothrottle is able to maintain
the SLO with the minimum CPU allocation.
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Figure 5: Autothrottle tailors CPU allocations to each mi-
croservice’s resource usage. Figure shows top 15 microser-
vices with the highest CPU usage in Train-Ticket under the
diurnal workload trace.

40.75% (or 61 cores for Social-Network). Deeper investiga-
tions suggest two reasons for this gap. First, while we are able
to achieve the model accuracy published by authors (e.g., train-
ing RMSE of 22.39 and validation RMSE of 22.07, for Social-
Network) after 20+ hours of training, this non-negligible error
can still mislead scaling decisions, especially for non-constant
workloads. Second, in order to reduce training costs, Sinan
learns to make relatively coarse-grained CPU allocation ad-
justments (i.e., ±1 core, ±10% cores, and ±50% cores).

Resource savings from Table 1 are due to Autothrottle’s
ability to tailor CPU allocations across services and over time.
For example, Figure 5 looks at top 15 microservices with the
highest CPU usage, under diurnal workload in Train-Ticket.
We note that CPU allocation is noticeably lower for services
with less CPU usage (e.g., price-service). Under the same
workload, Figure 6 illustrates how Tower updates performance
targets—as the RPS varies over time, Tower selects appropri-
ate throttle targets to adjust CPU allocations and maintain the
P99 latency. Note that per-minute P99 latencies are displayed
in this figure, different from the hourly P99 latencies shown
in the remaining evaluation.

5.3 Microbenchmarks

Correlation of proxy metrics to latencies. Compared with
the prevalent proxy metric for estimating resource demand—
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Figure 6: Measurements of Social-Network under diurnal
workload. Figures (a) and (b) show the latency and CPU statis-
tics achieved by Autothrottle. Figures (c) and (d) demonstrate
how Tower adjusts throttle targets in response to time-varying
workload for the two CPU usage groups (Appendix C).

CPU utilization, our use of CPU throttles is motivated by the
higher correlation with application latencies as demonstrated
by Figure 7. For each service in Social-Network, we manually
set its CPU quota (i.e., cpu.cfs_quota_us) to 40 uniformly
distributed values. Then, we measure CPU utilization, CPU
throttle counts, and application P99 latency, at 300 RPS. We
compute the Pearson correlation coefficient for (1) latency vs.
CPU throttles, and (2) latency vs. CPU utilization. Figure 7a
focuses on Social-Network microservices using the most CPU
cores. In all cases, CPU throttles exhibit a higher correlation
than CPU utilization, suggesting a stronger linear relationship.
Figure 7b shows the same conclusion for Hotel-Reservation.

Recall that Captains continuously collect local CPU throt-
tles for resource control (§3.2.2), and Tower distributes CPU-
throttle-based performance targets (§3.3.2). A high correla-
tion suggests that CPU throttling is indicative of the latency
and suitable to track locally in Captain as a target for main-
taining the SLO. The learning process in Tower can also be
simplified given a clear relationship between CPU throttles
and application latencies.

Tolerance to short-term workload fluctuations. Figure 8
shows that Captains can tolerate short-term local workload
fluctuations, even with static throttle targets. The experiment
starts by finding a throttle target for Social-Network’s 200
ms SLO, at 300 RPS. Then, we reuse this target while instru-
menting Locust to fluctuate RPS in a one-minute window for
60 minutes. The fluctuation ranges from 100 (i.e., RPS=250–
350) to 600 (i.e., RPS=1–600). In Figure 8a, boxplots sum-
marize the latency variance of 60 windows. Autothrottle can
keep the application P99 latency under SLO for a fluctua-
tion range up to 300 (i.e., RPS=150–450), or up to 500 (i.e.,
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Figure 7: As a proxy metric, CPU throttles exhibit a higher
correlation with application latencies than CPU utilization.
The figure shows top microservices with highest CPU usage.
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Figure 8: Captain maintains latency SLO under some work-
load fluctuations. Boxplots show latency variances, from
reusing the first blue boxplot’s performance target.

RPS=50–550) if we consider the median value instead. Sim-
ilarly, Figure 8b shows RPS fluctuation tolerance up to 800
(i.e., RPS=1,600–2,400) for Hotel-Reservation.

The tolerance to short-term workload fluctuations stems
from the use of performance targets (vs. exact resource alloca-
tions), which hide service-level resource details from Tower
and enable Captains to autonomously adjust resource allo-
cations. This tolerance is vital as it frees Tower from the
excessive recomputation of performance targets (§3.3.2).

Number of performance targets. Rather than generating
separate performance targets for individual microservices,
Tower clusters microservices into two categories based on
their average CPU usage, reducing the action space to two tar-
gets (§3.3.2). To assess this design, we empirically compare
the performance of 1, 2, 3, and 4 targets, under the constant
workload trace. In each scenario, we manually search for the
best-performing set of throttle targets that satisfy the SLO us-
ing the minimum number of CPU cores. For Social-Network,
Autothrottle allocates 70.8, 55.9, 55.1, and 54.7 cores with 1
to 4 targets, respectively. Hotel-Reservation consistently uses
the largest target (0.3) to meet the SLO on this trace, regard-
less of the number of targets. For Train-Ticket, the allocation
is 18.6, 18.1, and 18.1 cores with 1 to 3 targets (exhaustive
search is infeasible for 4 targets). Overall, these results sug-
gest a diminishing return beyond 2 targets.

Load-stressing to the limit. We stress resource managers, by
pushing Locust’s RPS to the application’s upper limit. This is
the breaking point (before application crashing) when almost
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Figure 9: A 21-day study on Social-Network with real-world workload trace from a global cloud provider. Compared with
Autothrottle, the K8s-CPU baseline over-allocates an average of 12.1 and up to 35.2 cores, and triggers 71 hourly SLO violations.

all CPU cores are allocated. To this end, we stress Social-
Network at constant RPS of 600 and 700, on the 160-core
cluster. At 600 RPS, Autothrottle still achieves a CPU core
saving of 27.67% and better SLO—it achieves a P99 latency
of 202 ms with only 98.3 cores, whereas K8s-CPU achieves
216 ms with 135.9 cores and K8s-CPU-Fast achieves 235 ms
with 133.1 cores. Finally, at 700 RPS, Autothrottle achieves a
P99 latency of 452 ms with only 106.8 cores, whereas K8s-
CPU achieves 600 ms with 153.1 cores, and K8s-CPU-Fast
achieves 551 ms with 143.8 cores.

Ablation study for contextual bandits. We investigate two
aspects that can impact Tower’s contextual bandits. The first
is the number of available throttle targets to choose from in
the action space (§3.3.2). For the constant workload trace,
reducing from 9 to 4 throttle targets results in over-allocating
5.6 CPU cores (or 10.03%) for Social-Network, and 0.7 CPU
cores (or 3.49%) for Train-Ticket. The second is the use of
neural networks (§4). Under various workload patterns on
Social-Network, we test a linear model and neural networks
with different numbers of hidden units, but their difference in
CPU allocation is small. None of the tested models violates
the SLO. We include the results in Appendix B.

5.4 Long-term evaluation

We perform a 21-day study with real-world workload trace
from a global cloud provider. Experiments are performed with
Social-Network on the 160-core cluster, and an hourly SLO
of 200 ms is set on P99 latency. We compare Autothrottle

with K8s-CPU, the best-performing baseline from §5.2. We
use day 1 for training and tuning Autothrottle and K8s-CPU.
For the former, we train the Tower’s model. For the latter,
we spend 24 man-hours to manually identify its best CPU
utilization threshold.

Figure 9 illustrates the results over the entire period. Fig-
ure 9a shows the CPU core saving that Autothrottle achieves
every hour, over the K8s-CPU baseline. First, Autothrottle
can save up to 35.2 cores (or an average saving of 12.1 cores)
over K8s-CPU. Second, although there are days when K8s-
CPU allocates fewer CPUs (e.g., an hourly average of −2.77
CPU cores on day 4), these are also the days when K8s-CPU
has a high chance of triggering SLO violations. In total, K8s-
CPU violates the hourly SLO 71 times (highlighted by red
boxes in Figure 9a). On the other hand, Autothrottle reduces
SLO violations to only 5 times—an investigation reveals that
these hours’ workloads appear anomalous (i.e., recorded RPS
jumps between 0 and ∼400) and unforeseen.

Figure 9b shows Social-Network’s P99 latency per hour.
One observation is that Autothrottle is able to continuously
maintain a P99 latency closer to the 200 ms SLO. Since its
P99 latency exhibits a much lower variance over time, this
results in a more stable application performance.

5.5 Large-scale evaluation
We now show Autothrottle’s scalability on the larger 512-core
cluster. It allows us to push RPS beyond the breaking point
of the 160-core cluster (§5.3), up to 1,200 on Social-Network
(the upper limit for comparison baselines). To fully allocate

11



Figure 10: Number of CPU cores that Autothrottle and base-
lines allocate, to satisfy Social-Network’s P99 SLO. Figure
shows Autothrottle’s scalability on the larger 512-core cluster.

all cores, we replicate Social-Network’s CPU-intensive mi-
croservices: Nginx (×3) and ML-based image classifier (×6).

Figure 10 shows that Autothrottle is able to allocate fewer
CPU cores while meeting Social-Network’s 200 ms P99 SLO.
Compared to the best-performing baselines, K8s-CPU and
K8s-CPU-fast, Autothrottle saves up to 28.24% (or 150 CPU
cores) and at least 5.92% (or 24 CPU cores). Finally, we note
that K8s-CPU-Fast can have a higher CPU allocation than
K8s-CPU, especially for the noisy workload trace. Since K8s-
CPU-Fast is more sensitive to CPU utilization changes than
K8s-CPU, it can sometimes accidentally scale down and lead
to SLO violations. As a result, conservatively setting K8s-
CPU-Fast results in the trade-off of higher CPU allocation.

6 Related Work

Cloud resource management. Cloud vendors have long
offered services that enable elastic scaling of VMs and their
associated resources according to user-defined rules [1, 3, 4].
In addition to rule-based scaling, researchers have proposed
predictive scaling, which involves forecasting future demand
and adjusting resource allocation in advance of any demand
changes [2, 26, 42, 51]. Despite the cost effectiveness of these
mechanisms in meeting SLOs, they are primarily designed
for VMs (e.g., targeting monolithic applications or relying on
VM-specific techniques such as live migration), and cannot be
directly applied to microservices. Other cluster management
frameworks [18, 27, 49, 55, 56] that schedule jobs to clusters
may be used in conjunction with Autothrottle.

Vertical scaling of microservices. Vertical autoscalers adjust
the resource limits in a fine-grained manner, e.g., milli-cores.
Kubernetes Vertical Pod Autoscaler (VPA) [6] heuristically
adjusts resource limits to maintain a user-specified utilization
threshold. Autopilot [46] focuses on vertical scaling, selecting
resource limits based on moving windows of historical usage
and an ML technique akin to multi-armed bandit. Sinan [63]
trains ML models to infer the likelihood of SLO violations
given a set of proposed CPU limits. FIRM [44] reacts to SLO
violations and pinpoints a microservice as the root cause, us-
ing reinforcement learning to scale up the service. A recent
work [36] (also named “Autothrottle”) adjusts the CPU quota

of containers using closed-loop control to satisfy their individ-
ual network SLOs (e.g., throughput), rather than application
latency SLOs. Autothrottle differs from these approaches with
its bi-level design and the use of CPU throttle targets.
Horizontal and hybrid scaling of microservices. Horizontal
autoscalers operate at a coarse-grained level by adjusting the
number of replicas of a microservice. Kubernetes Horizontal
Pod Autoscaling (HPA) [5] employs a mechanism similar to
VPA at its core, except for choosing the appropriate number
of pods to meet an input utilization threshold. GRAF [43]
leverages graph neural networks to model service dependen-
cies. COLA [47] uses a multi-armed bandit to collectively
determine the number of replicas for each microservice. In
addition, there are hybrid autoscalers that combine vertical
and horizontal scaling and apply them selectively [24, 33].
Autothrottle focuses on vertical scaling due to its fine-grained
and rapid reaction that empowers per-service controllers. As
future work, we plan to explore the integration of horizontal
scaling with Autothrottle.
Proxy metrics for estimating resource demand. In compar-
ison to CPU throttles, alternative service-level proxy metrics
fall short in maintaining end-to-end latency under workload
changes. Kubernetes defaults to CPU utilization [5], but high
CPU usage does not always indicate an issue if requests can
still complete within the SLO [34,47]. Queue length [61], the
number of requests pending at a service, overlooks the com-
plexity of individual requests, while queuing delay [16, 64]
depends on the service’s threading model [53] and may re-
quire manual instrumentation of each service. The scattered
nature of queues across the application, OS, and network,
further complicates precise measurement of queue length or
queuing delay [63]. Regardless, dynamically adapting the
thresholds for these metrics may require an application-level
controller as proposed by Autothrottle.

7 Conclusion

Autothrottle is a bi-level learning-assisted resource manage-
ment framework for SLO-targeted microservices. It decou-
ples mechanisms of SLO feedback and resource control, and
bridges them through CPU-throttle-based performance tar-
gets. Going forward, we are extending to additional resource
types such as memory and storage, and exploring integrations
with additional scaling strategies such as horizontal scaling.
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Appendices

A Application workload details

We present the workload composition used in our experiments.
Our workload generator, Locust, follows the ratios specified
below when generating requests at a given RPS:

Train-Ticket:
• Mainpage: 29.41%
• Travel: 58.82%
• Assurance: 2.94%

• Food: 2.94%
• Contact: 2.94%
• Preserve: 2.94%

Hotel-Reservation:
• Search: 60%
• Recommend: 39%

• Reserve: 0.5%
• Login: 0.5%

Social-Network:
• Read-home-timeline: 65%
• Read-user-timeline: 15%

• Compose-post: 20%

B Vowpal Wabbit usage

The following VW parameters are used in our experiments.
• The doubly robust estimator [20] is employed for policy

evaluation: –-cb_type dr

• Number of available actions: –-cb_explore 81

• The native ε-greedy is disabled to implement our cus-
tomized exploration strategy (§3.3.2): –-epsilon 0

• Number of hidden units in the neural network: –-nn 3

• Learning rate: -l 0.5

We also compare different VW models—a linear model
and neural networks with 2, 3, 4 and hidden units, on Social-
Network under the same workload patterns (Figure 3). Fig-
ure 11 shows that Autothrottle perform similarly across differ-
ent models. We select the neural network model with 3 hidden
units, as it performs slightly better on the bursty workload (as
indicated by the lower whiskers in boxplots).

C Microservice clustering

Tower clusters microservices into two groups based on their
average CPU usage, denoted “High” and “Low”, using a stan-
dard k-means clustering algorithm (§3.3.2). Table 2 presents
a breakdown of the number of services in each group.

D Microservice replicas

Train-Ticket and Hotel-Reservation deploy each service with
one replica. For Social-Network, we employ three replicas of
media-filter-service except in the large-scale evaluation
(§5.5). In §5.5, 6 replicas of media-filter-service and 3
replicas of nginx-thrift are employed.
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Figure 11: Different VW models—a linear model and neural
networks with 2, 3, and 4 hidden units—perform similarly on
Social-Network under various workloads (Figure 3).

Application “High” group “Low” group

Train-Ticket 8 60
Hotel-Reservation 6 11
Social-Network (160-core cluster) 1 27
Social-Network (512-core cluster) 2 26

Table 2: Number of services in each application assigned to
the “High” and “Low” CPU usage groups.

E RPS range of workload traces

We scale the traces presented in Figure 3 to saturate the cluster
for each application, as documented in Table 3.

F CPU utilization thresholds in K8s-CPU and
K8s-CPU-Fast

In evaluating K8s-CPU and K8s-CPU-Fast, we test and select
the best-performing CPU utilization threshold from the set
{0.1,0.2, . . . ,0.9}, for each application and each workload
trace. The selected thresholds are presented in Table 4.

G Evaluation methodology details

All experiments are performed using one-hour workload
traces. Prior to testing, certain applications require additional
preparations. We warm up Hotel-Reservation by sending 200
requests per second for 15 seconds and waiting for 60 sec-
onds. For Social-Network, we populate the database with
962 users, 18,812 edges, and 20,000 posts. We then warm up
for 3 minutes by incrementally increasing the RPS by 10%
every 5 seconds, up to the initial RPS in the one-hour trace.
The warm-up phase is excluded from the calculation of P99
latency and resource allocation.

Autothrottle shown in Table 1 is warmed up for 12 hours.
The first 6 hours are the (random) exploration stage, followed
by 6 hours of normal learning with ε=0.5. We use a separate
1-hour diurnal trace, which is different from the one used for
testing but has the same RPS range. Warm up involves running
12 repetitions of this trace. During testing, exploration is
turned off completely (with ε set to 0). For Hotel-Reservation,
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Workload Min RPS Average RPS Max RPS

Diurnal 145 262 411
Constant 152 200 252
Noisy 75 157 252
Bursty 62 163 442

(a) Train-Ticket

Workload Min RPS Average RPS Max RPS

Diurnal 1721 2627 4003
Constant 1855 2002 2183
Noisy 793 1575 2470
Bursty 768 1633 4037

(b) Hotel-Reservation

Workload Min RPS Average RPS Max RPS

Diurnal 227 394 656
Constant 390 500 588
Noisy 105 236 390
Bursty 104 245 648
Long-term (§5.4) 1 230 592

(c) Social-Network

Workload Min RPS Average RPS Max RPS

Diurnal 479 787 1214
Constant 882 1001 1131
Noisy 232 472 771
Bursty 205 489 1266

(d) Social-Network, large-scale evaluation (§5.5)

Table 3: The RPS range of workload traces after being scaled
to saturate the cluster for each application.

RPS is grouped into bins of 200 due to its high RPS, while
other applications use the default bin size of 20.

H Captain performance

We demonstrate Captain’s ability to achieve Tower’s given
performance target of CPU throttle ratio (§3.2). This is one
factor that determines Autothrottle’s effectiveness in main-
taining the end-to-end SLO. To this end, Figure 12 dives into
Social-Network and illustrates two services from “High” and
“Low” CPU usage groups (§C): media-filter-service and
post-storage-service. Two subfigures compare the target
throttle ratio and the actual throttle ratio, over a period of 60
min. Captain’s heuristics meets the targets relatively well and
reacts quickly to target changes, especially when the target
is low (Figure 12b). In Figure 12a, we note that the actual
throttle ratio is lower than the target. The reason is that the
throttle ratio is very sensitive to CPU allocation, especially
when the target is high. As a result, Captain tries to err on
the safe side, and it can over-allocate to avoid exceeding the
targeted throttle ratio due to estimation errors.

Workload K8s-CPU K8s-CPU-Fast

Diurnal 0.4 0.6
Constant 0.6 0.6
Noisy 0.5 0.7
Bursty 0.5 0.6

(a) Train-Ticket

Workload K8s-CPU K8s-CPU-Fast

Diurnal 0.7 0.7
Constant 0.7 0.8
Noisy 0.6 0.7
Bursty 0.5 0.7

(b) Hotel-Reservation

Workload K8s-CPU K8s-CPU-Fast

Diurnal 0.5 0.5
Constant 0.5 0.6
Noisy 0.5 0.4
Bursty 0.5 0.4
Long-term (§5.4) 0.5 –

(c) Social-Network

Workload K8s-CPU K8s-CPU-Fast

Diurnal 0.6 0.7
Constant 0.5 0.8
Noisy 0.5 0.5
Bursty 0.5 0.7

(d) Social-Network, large-scale evaluation (§5.5)

Table 4: The best-performing CPU utilization thresholds for
comparison baselines, per application and workload trace.
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(a) media-filter-service
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(b) post-storage-service

Figure 12: Captain is able to follow the given performance
target over time, by adjusting per-service resources.

17


	Introduction
	Background and Motivation
	Implications of microservices
	Service execution dependencies
	Delayed end-to-end performance feedback

	A practical approach

	The Autothrottle Framework
	Overview
	Per-service controllers—Captains
	Resource metrics and knobs
	Multiplicative scale-up
	Instantaneous scale-down
	Rollback mechanism after scaling down

	Application-level controller—Tower
	Primer on contextual bandits
	Realizing contextual bandits in Tower


	Implementation
	Evaluation
	Methodology
	Application SLO and resource saving
	Microbenchmarks
	Long-term evaluation
	Large-scale evaluation

	Related Work
	Conclusion
	Application workload details
	Vowpal Wabbit usage
	Microservice clustering
	Microservice replicas
	RPS range of workload traces
	CPU utilization thresholds in K8s-CPU and K8s-CPU-Fast
	Evaluation methodology details
	Captain performance

